HAND OUT

MODULE 2/3

Std VII

MATHEMATICS

CONGRUENCE OF TRIANGLES

1. S S S (Side Side Side) congruence : If under a given correspondence two triangles are congruent if the three sides of one triangle are equal to the three corresponding sides of another triangle, then the triangles are congruent. Note: The order of the letters in the names of congruent triangles displays the corresponding relationships. Thus when \triangle ABC \cong \triangle RPQ A lies on R B lies on P C lies on Q \overline{AB} along \overline{RP} \overline{BC} along \overline{PQ}

And \overline{AC} along \overline{RQ}

S A S (Side - Angle –Side) Congruence
If under a correspondence, two sides and the angle included between them of a triangle are equal to two corresponding sides and the angle included between them of another

triangle, then the triangles are congruent.

Q1. ABC and DBC are two triangles drawn on a common base BC such that AB = DC and

DB=AC on the same side of BC. Are \triangle ADB and \triangle DAC congruent?

If yes, state the corresponding parts. Which conditions did you use to establish the

congruence?

Solution: In Δ ADB and Δ DAC we have

AB = DC (given) BD = CA (given) AD = AD (common side) $\Delta ADB \cong \Delta DAC \text{ Also, } A \leftrightarrow D, D \leftrightarrow A \text{ and } B \leftrightarrow C$

Since the three corresponding equal parts are the sides of the triangle, therefore SSS congruence condition is used to prove the congruence.

Q 2. Check whether the following triangles are congruent by SAS congruence criteria?

Solution : Here we can see

AB = QR = 4 cm BC = PR = 6 cm. \angle B = 30°, \angle P = 30°

But $\angle P$ is not the included angle of side PQ and QR.

Therefore $\triangle ABC$ is not congruent to $\triangle PQR$.
