
ATOMIC ENERGY EDUCATION SOCIE1 Anushaktinagar, Mumbai Class-12th Chemistry Lesson:12 Aldehydes, Ketones & **Carboxylic Acids MODULE-2/3 By-Rahul Soni**

Physical properties

- Nature of intermolecular forces :
- The carbonyl bond (C=O) in aldehydes and ketones is a polar covalent bond. As a result, these compounds contain dipole-dipole forces of attraction. The molecules orient in such a way as to have oppositely polarized atoms facing each other.

 Carboxyl group of carboxylic acid contains O-H bond which is responsible for formation of hydrogen bonding. Thus, carboxylic acids have the strongest intermolecular forces of attraction

Physical state and boiling points

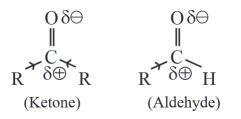
- Formaldehyde is a gas at room temperature and has irritating odour.
- Acetaldehyde is extremely volatile, colourless liquid.
- Higher aldehydes have pleasant odour.
- Acetone is a liquid at room temperature and has pleasant odour.
- Increasing boiling points in the homologous series of aldehydes and ketones.

Solubility of aldehydes and ketones

- The oxygen atom of (C=O) can involve in hydrogen bonding with water molecule. As a result of this, the <u>lower aldehydes and ketones</u> <u>are water soluble</u> (For example : acetaldehyde, acetone).

Polarity of carbonyl group

 The polarity of a carbonyl group originates from higher electronegativity of oxygen relative to carbon as well as resonance effects as shown


- The carbonyl carbon has positive polarity (see structures (A) and (D). Therefore, it is electron deficient.
- As a result, this carbon atom is electrophilic (electron loving) and is susceptible to attack by a nucleophile (Nu:).

Reactivity of aldehydes and ketones

- Reactivity of aldehydes and ketones is due to the polarity of carbonyl group which results in <u>electrophilicity</u> of carbon.
- <u>Aldehydes are more reactive than ketones</u> toward <u>nucleophilic attack</u>.
- Influence of electronic effects :
- Alkyl groups have +I effect.
- A ketone has two +I groups, decreasing c=o`s elecropositivity.
- In contrast, aldehydes have only one electron donating group, bonded to carbonyl carbon.
- Hence aldehydes more electrophilic than ketones.

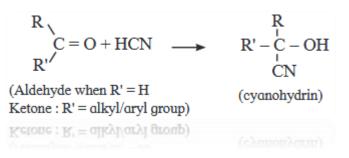
2. Steric effects

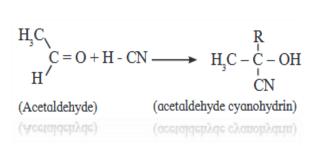
- Two bulky alkyl groups in ketone come in the way of incoming nucleophile. This is called steric hindrance to nucleophilic attack.
- On the other hand, nucleophile can easily attack the carbonyl carbon in aldehyde, because it has one alkyl group and is less crowded or sterically less hindered.
- Hence, aldehyde are more easily attacked by nucleophiles.

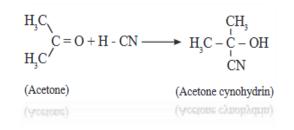
Laboratory tests for aldehydes and ketones

- Aldehydes are easily oxidized to carboxylic acids,
- therefore, act as reducing agents toward mild oxidizing agents.
- Ketones, do not have hydrogen atom directly attached to carbonyl carbon.
- Hence, they are not oxidized by mild oxidizing agents.
- Tests given by only aldehydes :
- 1. Schiff's test: When alcoholic solution of aldehyde is treated with few drops of Schiff 's reagent, pink or red or magenta colour appears. This confirms the presence of aldehydic (-CHO) group.

2. Tollens' test or silver mirror test: When an aldehyde is boiled with Tollens' reagent (ammonical silver nitrate), silver mirror is formed. The aldehyde is oxidized to carboxylate ion by Tollens' reagent and Ag⁺ ion is reduced to Ag.

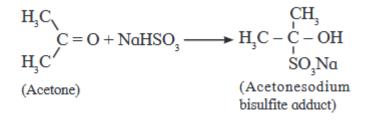

$$\begin{array}{ccc} \text{R} - \text{CHO} &+ & 2 \text{ Ag} \left(\text{NH}_{3}\right)_{2}^{\oplus} + 3\text{OH}^{\oplus} \xrightarrow{\Delta} & \text{R} - \text{COO}^{\oplus} + 2 \text{ Ag} \downarrow + 4\text{NH}_{3} \uparrow + 2\text{H}_{2}\text{O} \\ & & (\text{carboxylate}) & (\text{Silver mirror}) \end{array}$$


Fehling test: When a mixture of an aldehyde and Fehling solution is boiled in hot water, a <u>red precipitate</u> of cuprous oxide is formed. An aldehyde is oxidized to carboxylate ion by Fehling solution and Cu₂⊕ ion is reduced to Cu[⊕] ion. It may be noted that α-hydroxy ketone also gives this test positive.


$$\begin{array}{ll} \text{R} - \text{CHO} &+ 2\text{Cu}^{2\oplus} + 5\text{OH}^{\oplus} \xrightarrow{\text{boil}} & \text{R} - \text{COO}^{\oplus} &+ \text{Cu}_2\text{O} \downarrow &+ 3\text{H}_2\text{O} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$$

Chemical reactions of ald. and ket. with nucleophile

- all these reactions the nucleophilic reagent attacks on positively polarized electrophilic carbonyl carbon in aldehydes and ketones.
- Addition of hydrogen cyanide (H-CN):
- Hydrogen cyanide (weak acid) adds across the carbon-oxygen double bond in aldehydes and ketones to produce compounds called <u>cyanohydrins</u>.
- The negative part of the reagent (CN) attacks the electrophilic carbon of carbonyl group. The reaction requires either acid or base as catalyst.



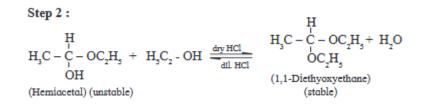
- b. Addition of NaHSO₃ (Sodium bisulphite) :
- Aldehydes and ketones react with saturated aqueous solution of sodium bisulfite to give crystalline precipitate of sodium bisulfite adduct (addition compound). For example,

$$\begin{array}{c} H_{3}C \\ C = O + NaHSO_{3} \longrightarrow H_{3}C - C - OH \\ H \\ \end{array}$$
(Acetaldehyde)
(Acetaldehyde)
(Acetaldehyde sodium bisulfite adduct)

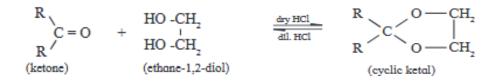
- c. Addition of alcohols :
- Aldehyde reacts with one molecule of anhydrous monohydric alcohol in presence of dry hydrogen chloride to give alkoxyalcohol known as hemiacetal

Step 1:

$$\begin{array}{c} R \\ C = O + R' - OH \xrightarrow{dry HCl} R - \stackrel{H}{C} - OR' \\ H \end{array}$$
(Aldehyde) (Hemiacetal) unstable


 which further reacts with one more molecule of anhydrous monohydric alcohol to give a geminal-dialkoxy compound known as acetalas shown in the reaction.

$$\begin{array}{c} H & H \\ R - \overset{H}{\overset{}_{C}} - OR' + R' - OH & \overset{dry \, HCl}{\overset{}_{dll \, HCl}} & R - \overset{H}{\overset{}_{C}} - OR' \\ OH & OR' \\ (Hemiacetal) & (Acetal) \, stable \\ & + H_2O \end{array}$$

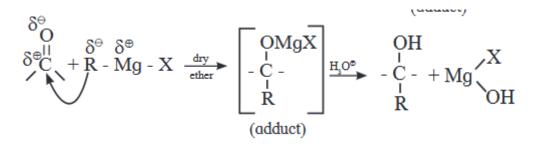

•

Step 1:

$$H_3C$$

 $C = O + H_5C_2 - OH \xrightarrow{dry HCl}_{dll. HCl} H_3C - C - OC_2H_5$
 H
(Acetaldehyde) (Hemiacetal) unstable

- Similarly, Ketones react with alcohol in presence of acid catalyst to form hemiketal and ketal.
- Ketones react with 1,2- or 1,3- diols in presence of dry hydrogen chloride to give five- or six -membered cyclic ketals .



• The reaction can be reversed by treating the cyclic ketal with aqueous HCl to regenerate the ketone.

- Acetals and ketals are hydrolysed with aqueous mineral acids to give corresponding aldehydes and ketones respectively.
- d. Addition of Grignard reagent: Aldehydes and ketones on reaction with alkyl magnesium halide followed by acid hydrolysis give alcohols.(Refer to Chapter 11, sec. 11.4.1 d.)
- By addition of Grignard reagent to aldeheydes and ketones : Grignard reagent reacts with aldehyde or ketone to form an adduct which on hydrolysis with dilute acid gives the corresponding alcohols.

• d. Addition of Grignard reagent: Aldehydes and ketones on reaction with alkyl magnesium halide followed by acid hydrolysis give alcohols.(Refer to Chapter 11, sec. 11.4.1 d.)

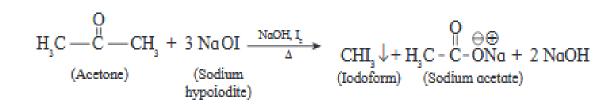
 By addition of Grignard reagent to aldeheydes and ketones : Grignard reagent reacts with aldehyde or ketone to form an adduct which on hydrolysis with dilute acid gives the corresponding alcohols

e. Nucleophilic addition –elimination of aldehydes and ketones with ammonia derivatives: Aldehydes and ketones undergo addition elimination with some ammonia derivatives (NH2-Z) to give product containing C = N bonds (imines). The reaction is reversible and takes place in weakly acidic medium. The substituted imine is called a Schiff 's base

$$C = O + NH_2 - Z \implies \begin{bmatrix} -C - N - Z \\ OH H \end{bmatrix} \xrightarrow{-H_2O} \begin{bmatrix} -L - N - Z \\ OH H \end{bmatrix}$$
(Aldehyde (imine)

• Where Z = -R, -Ar, $-NH_2$, $-NHC_6H_5$, $-NHCONH_2$, $-NHC_6H_3(NO_2)_2$

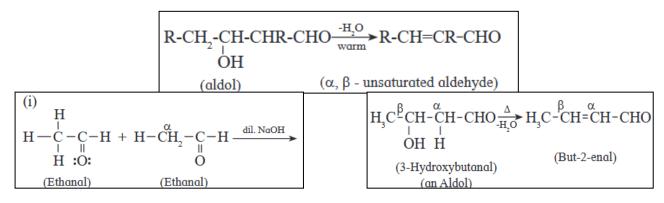
Sr. No.	Aldehyde(R'=H)/ Ketone(R'≠H)	+ NH ₂ - Z	-H ⁰ ►	imine (a crystalline derivative)
1.	R C=O R'	NH ₂ -OH + Hydroxyl amine	- <u>H</u> ,0*	R R'-C=N-OH oxime
2.	R C=O R'	NH2-NH2 + Hydrazine	<u>-</u> Ħ ⁰ ►	R I R'-C=N-NH ₂ hydrazone
3.	R C=0 R'	NH ₂ -NH- C ₆ H ₃ + Phenyl hydrozine	<u>-</u> Ħʻ0	R I R'-C=N-NH-C ₆ H ₅ phenylhydrazone
4.	R C=0 R'	NH ₂ -NH-CONH ₂ + Semicarbazide	<u>-</u> H_0►	R R'-C=N-NH-CONH ₂ semicarbazone
5.	R C=O R'	+H2N-N-N-NO2 2, 4 - Dinitrophenyl hydrazine	-ң₀≯	R C=N-N-N-NO 2, 4 - Dinitrophenylhydrazone
	LT.	с-с-N-он]		н

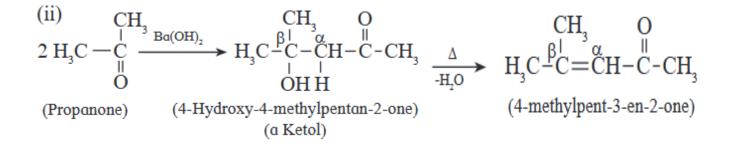

$$\begin{array}{c} H_{3}C\\ C = O + NH_{2}-OH \rightleftharpoons \begin{bmatrix} H_{3}C - C - N - OH\\ HO \end{bmatrix} \xrightarrow{-H_{2}O} H_{3}C - C = N - OH\\ HO \end{bmatrix} \xrightarrow{H} H_{3}C - C = N - OH$$
(Acetaldehyde) (Hydroxyl amine) (Acetaldoxime)

• All aldehydes and ketones give similar reactions. The resulting products have high molecular mass and are crystalline solids.

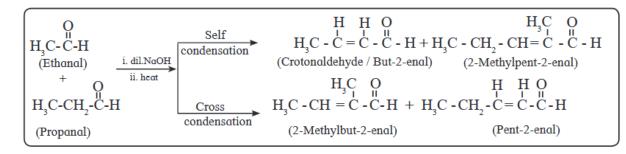
• These reactions are, therefore, useful for characterization of the original aldehydes and ketones

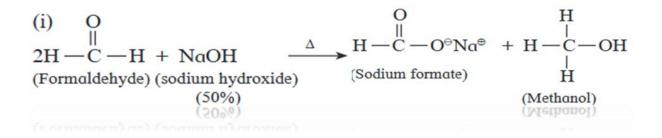
- f. Haloform reaction :
- This reaction is given by acetaldehyde, all methyl ketones (CH₃-CO-R) and all alcohols containing CH₃-(CHOH)- group.
- When an alcohol or methyl ketone is warmed with sodium hydroxide and iodine, a yellow precipitate is formed.
- Here the reagent sodium hypoiodite is produced in situ.
- During the reaction, sodium salt of carboxylic acid is formed which contains one carbon atom less than the substrate.
- The methyl group is converted in to haloform.
- For example : Acetone is oxidized by sodium hypoiodite to give sodium salt of acetic acid and yellow precipitate of iodoform.


• Haloform reaction:

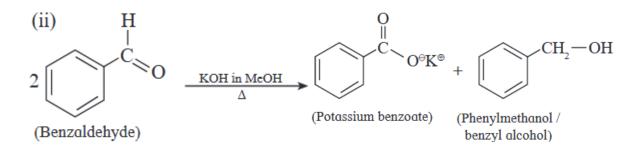

- g. Aldol condensation :
- Aldehydes containing at <u>least one α –hydrogen atom</u> undergo a reaction in presence of dilute alkali (dilute NaOH, KOH or Na₂CO₃) as catalyst to form b-hydroxy aldehydes (aldol). This reaction is known as aldol reaction.

$$\begin{array}{ccc} 2\text{R-CH}_2\text{-CHO} \xrightarrow[]{\text{aq. NaOH}} & \text{R-CH}_2\text{-CH-CHR-CHO} \\ & & & & OH \\ & & & & (aldehyde) \end{array}$$

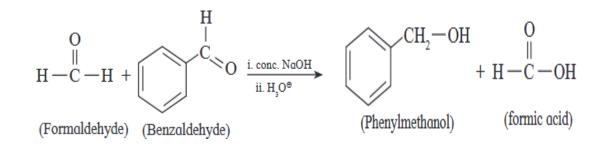

 Formation of aldol is an addition reaction. Aldol formed from aldehyde having α-hydrogens undergoes subsequent elimination of water molecule on warming, giving rise to α, b - unsaturated aldehyde.



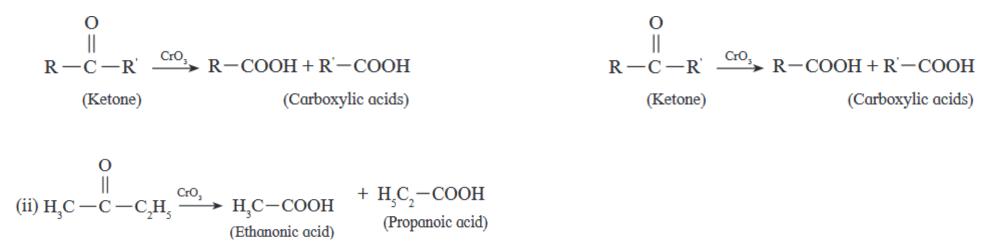
- The overall reaction is called aldol condensation. It is a nuclephilic addition-elimination reaction.
- Ketones containing at least two α- hydrogens, also undergo aldol condensation reaction and give an α, b - unsaturated ketone.
- For example:



• For example: a mixture of ethanal and propanal on reaction with dilute alkali followed by heating gives a mixture of four products



- cannizzaro reaction : one molecule of an aldehyde is reduced to alcohol and at the same time second molecule is oxidized to carboxylic acid salt.
- ullet
- For example, Formaldehyde and benzaldehyde

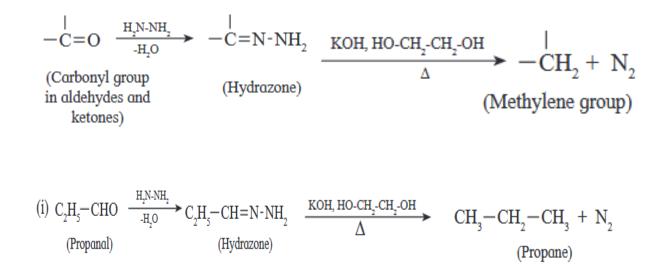

- h`. Cross Cannizzaro reaction: When a mixture of formaldehyde and non-enolisable aldehyde (aldehyde with no α-hydrogen) is treated with a strong base, formaldehyde is oxidized to formic acid while the other non-enolisable is reduced to alcohol. Formic acid forms sodium formate with NaOH. On acidification sodium formate is converted into formic acid.
- For example :

- Oxidation of aldehydes and ketones by dilute HNO3, KMnO4 and K2Cr2O7:
- Aldehydes are oxidized to the corresponding carboxylic acids by oxidant such as dilute nitric acid, potassium permanganate and sodium or potassium dichromate in acidic medium.

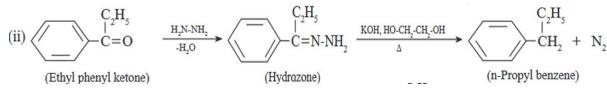
$$\begin{array}{c} R-CHO & \xrightarrow{K_2Cr_2O_7} & R-COOH \\ \hline & \text{(Aldehyde)} & (Carboxylic acid) \end{array}$$

 Ketones resist oxidation due to strong CO-C bond ,but they are oxidized by strong oxidizing agents such as CrO₃, alkaline KMnO4 or hot concentrated HNO₃ to a mixture of carboxylic acids having less number of carbon atoms than the starting ketone. Thus, Oxidation of ketones is accompanied by breaking C - C bond.

- b. Clemmensen and Wolf-Kishner reduction:
- The carbonyl group of aldehydes and ketones is reduced to methylene group (-CH2-) on treatment with zinc –amalgam and concentrated hydrochloric acid (Clemmensen reduction) or hydrazine followed by heating with sodium or potassium hydroxide in high boiling solvent like ethylene glycol (Wolf-Kishner reduction).
- In both the reactions, oxygen is replaced by two hydrogen atoms.

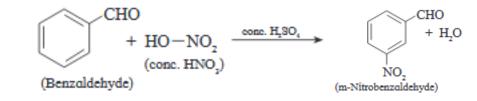

• Clemmensen reduction

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} C=O+4[H] & \xrightarrow{Zn-Hg, \ conc. \ HCl} & -CH_2 + H_2O \\ (Carbonyl group \\ in aldehydes \ and \\ ketones) \end{array} & (Methylene \ group) \\ \end{array}$$


$$(i) \begin{array}{c} \begin{array}{c} CH_3 \\ H_3C-C=O+4[H] & \xrightarrow{Zn-Hg, \ conc. \ HCl} \\ A \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ A \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ A \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \\ B \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_2O \end{array} & \begin{array}{c} CH_3 \\ H_3C-CH_2 + H_3C H_3 \\ H_3C-CH_3 + H_3C H_3 \\ & \begin{array}{c} CH_3 \\ H_3C-CH_3 + H_3C H_3 \\ H_3C-CH_3 + H_3C H_3 \\ H_3C-CH_3 + H_3C H_3 \\ H_3C-CH_3 \\ H_3C-CH_3$$

(ii)
$$CH_3 - CH_2 - CHO + 4[H] \xrightarrow{Zn-Hg, conc. HCl} CH_3 - CH_2 - CH_3 + H_2O$$

• Wolf-Kishner reduction



 Wolf-Kishner reduction is used to synthesize straight chain alkyl substituted benzenes which is not possible by Friedel-Crafts alkylation reaction

• Electrophilic substitution reactions:

- Aromatic aldehydes and ketones undergo electrophilic substitution reactions such as nitration, Sulfonation and halogenation. The aldehydic (-CHO) and ketonic (>C=O) groups are electronwithdrawing by inductive as well as resonance effects. They deactivate the benzene ring at ortho- and para- positions. This results in the formation of meta-product.
- For example ,

THANK YOU