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From this follow the results

 (i) ˆ ˆ ˆ ˆ ˆ ˆ, ,× = × = × =i i 0 j j 0 k k 0

(ii) ˆ ˆ ˆ× =i j k

Note that the magnitude of ˆ ˆ×i j  is sin900

or 1, since î  and ĵ  both have unit

magnitude and the angle between them is 900.

Thus, ˆ ˆ×i j  is a unit vector. A unit vector

perpendicular to the plane of î  and ĵ  and

related to them by the right hand screw rule is

k̂ . Hence, the above result. You may verify

similarly,

ˆ ˆ ˆ ˆ ˆ ˆand× = × =j k i k i j

From the rule for commutation of the cross
product, it follows:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,× = − × = − × = −j i k k j i i k j

Note if ˆ ˆ ˆ, ,i j k occur cyclically in the above

vector product relation, the vector product is

positive. If ˆ ˆ ˆ, ,i j k  do not occur in cyclic order,

the vector product is negative.
Now,

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z x y za a a b b b× = + + × + +a b i j k i j k

ˆ ˆ ˆ ˆ ˆ ˆ
x y x z y x y z z x z ya b a b a b a b a b a b= − − + + −k j k i j i

= + +( )� ( )� ( ) �a b a b a b a b a b a by z z y z x x z x y y x− − −i j k

We have used the elementary cross products
in obtaining the above relation. The expression
for a × b  can be put in a determinant form
which is easy to remember.

ˆ ˆ ˆ

x y z

x y z

a a a

b b b

× =
i j k

a b

Example 7.4  Find the scalar and vector

products of two vectors. a = (3î  – 4ĵ  + 5k̂ )
and b = (– 2î  + ĵ  – 3k̂ )

Answer

ˆ ˆ ˆ ˆ ˆ ˆ(3 4 5 ) ( 2 3 )

6 4 15

25

= − + − + −
= − − −
= −

a b i j k i j ki i

ˆ ˆ ˆ

ˆ ˆ ˆ3 4 5 7 5

2 1 3

× = − = − −
− −

i j k

a b i j k

Note  ˆ ˆ ˆ7 5× = − + +b a i j k   t

7.6 ANGULAR VELOCITY AND ITS
RELATION WITH LINEAR VELOCITY

In this section we shall study what is angular
velocity and its role in rotational motion. We
have seen that every particle of a rotating body
moves in a circle. The linear velocity of the
particle is related to the angular velocity. The
relation between these two quantities involves
a vector product which we learnt about in the
last section.

Let us go back to Fig. 7.4. As said above, in
rotational motion of a rigid body about a fixed
axis, every particle of the body moves in a circle,

Fig. 7.16 Rotation about a fixed axis. (A particle (P)

of the rigid body rotating about the fixed

(z-) axis moves in a circle with centre (C)

on the axis.)

which lies in a plane perpendicular to the axis
and has its centre on the axis. In Fig. 7.16 we
redraw Fig. 7.4, showing a typical particle (at a
point P) of the rigid body rotating about a fixed
axis (taken as the z-axis). The particle describes
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a circle with a centre C on the axis. The radius
of the circle is r, the perpendicular distance of
the point P from the axis. We also show the
linear velocity vector v of the particle at P. It is
along the tangent at P to the circle.

Let P′ be the position of the particle after an
interval of time ∆t (Fig. 7.16). The angle PCP′
describes the angular displacement ∆θ of the
particle in time ∆t. The average angular velocity
of the particle over the interval  ∆t is ∆θ/∆t. As
∆t tends to zero (i.e. takes smaller and smaller
values), the ratio ∆θ/∆t approaches a limit which
is the instantaneous angular velocity dθ/dt of
the particle at the position P. We denote the
instantaneous angular velocity by  ω (the
Greek letter omega). We know from our study
of circular motion that the magnitude of linear
velocity  v of a particle moving in a circle is
related to the angular velocity of the particle ω
by the simple relation rυ ω= , where r is the
radius of the circle.

We observe that at any given instant the
relation  v rω=  applies to  all particles of the
rigid body. Thus for a particle at a perpendicular
distance r

i
  from the fixed axis, the linear velocity

at a given instant v
i
 is given by

i iv rω= (7.19)

The index i runs from 1 to n, where n is the
total number of particles of the body.

For particles on the axis, 0=r , and hence

v = ω r = 0. Thus, particles on the axis are
stationary. This verifies that the axis is fixed.

Note that we use the same angular velocity
ω for all the particles. We therefore, refer to  ωωωωω
as the angular velocity of the whole body.

We have characterised pure translation of

a body by all parts of the body having the same
velocity at any instant of time. Similarly, we

may characterise pure rotation by all parts of

the body having the same angular velocity at
any instant of time. Note that this

characterisation of the rotation of a rigid body

about a fixed axis is just another way of saying

as in Sec. 7.1 that each particle of the body moves

in a circle, which lies in a plane perpendicular

to the axis and has the centre on the axis.
In our discussion so far the angular velocity

appears to be a scalar. In fact, it is a vector. We
shall not justify this fact, but we shall accept
it. For rotation about a fixed axis, the angular
velocity vector lies along the axis of rotation,

and points out in the direction in which a right
handed screw would advance, if the head of the
screw is rotated with the body. (See Fig. 7.17a).

The magnitude of this vector is d dtω θ=
referred as above.

Fig. 7.17 (a) If the head of a right handed screw

rotates with the body, the screw

advances in the direction of the angular

velocity ωωωωω. If the sense (clockwise or

anticlockwise) of rotation of the body

changes, so does the direction of ωωωωω.

Fig. 7.17 (b) The angular velocity vector ωωωωω is

directed along the fixed axis as shown.

The linear velocity of the particle at P

is v = ωωωωω × r. It is  perpendicular to both

ω ω ω ω ω and r and is  directed along the

tangent to the circle described by the

particle.

We shall now look at what the vector product
ωωωωω × r corresponds to. Refer to Fig. 7.17(b) which
is a part of Fig. 7.16 reproduced to show the
path of the particle P. The figure shows the
vector ωωωωω directed along the fixed (z–) axis and

also the position vector  r = OP  of the particle

at P of the rigid body with respect to the origin
O. Note that the origin is chosen to be on the
axis of rotation.
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Now ωωωωω × r = ωωωωω × OP = ωωωωω × (OC + CP)

But ωωωωω × OC = 0 0 0 0 0 as ω ω ω ω ω is along OC

Hence ωωωωω × r = ωωωωω × CP

The vector ωωωωω × CP is perpendicular to ωωωωω, i.e.

to the z-axis and also to CP, the radius of the

circle described by the particle at P. It is

therefore, along the tangent to the circle at P.

Also, the magnitude of  ωωωωω × CP is ω (CP) since

ωωωωω and CP are perpendicular to each other. We

shall denote CP by ⊥r  and not by r, as we did

earlier.

Thus, ωωωωω × r is a vector of magnitude ωr⊥

and is along the tangent to the circle described
by the particle at P. The linear velocity vector v
at P has the same magnitude and direction.
Thus,

v = ω ω ω ω ω × r (7.20)

In fact, the relation, Eq. (7.20), holds good
even for rotation of a rigid body with one point
fixed, such as the rotation of the top [Fig. 7.6(a)].
In this case r represents the position vector of
the particle with respect to the fixed point taken
as the origin.

We note that for rotation about a fixed
axis, the direction of the vector ωωωωω does not
change with time. Its magnitude may,
however, change from instant to instant. For
the more general rotation, both the
magnitude and the direction of ω ω ω ω ω may change
from instant to instant.

7.6.1 Angular acceleration

You may have noticed that we are developing

the study of rotational motion along the lines

of the study of translational motion with which

we are already familiar. Analogous to the kinetic

variables of linear displacement (s) and velocity

(v) in translational motion, we have angular

displacement (θθθθθ) and angular velocity (ωωωωω) in

rotational motion. It is then natural to define

in rotational motion the concept of angular

acceleration in analogy with linear acceleration

defined as the time rate of change of velocity in

translational motion. We define angular

acceleration ααααα as the time rate of change of

angular velocity; Thus,

d

dt
=

ωωωω
αααα (7.21)

If the axis of rotation is fixed, the direction
of ω ω ω ω ω and hence, that of ααααα is fixed. In this case
the vector equation reduces to a scalar equation

d

dt

ωα = (7.22)

7.7  TORQUE AND ANGULAR MOMENTUM

In this section, we shall acquaint ourselves with
two physical quantities (torque and angular
momentum) which are defined as vector products
of two vectors. These as we shall see, are
especially important in the discussion of motion
of systems of particles, particularly rigid bodies.

7.7.1 Moment of force (Torque)

We have learnt that the motion of a rigid body,

in general, is a combination of rotation and

translation. If the body is fixed at a point or along

a line, it has only rotational motion. We know

that force is needed to change the translational

state of a body, i.e. to produce linear

acceleration. We may then ask, what is the

analogue of force in the case of rotational

motion? To look into the question in a concrete

situation let us take the example of opening or

closing of a door. A door is a rigid body which

can rotate about a fixed vertical axis passing

through the hinges. What makes the door

rotate? It is clear that unless a force is applied

the door does not rotate. But any force does not

do the job. A force applied to the hinge line

cannot produce any rotation at all, whereas a

force of given magnitude applied at right angles

to the door at its outer edge is most effective in

producing rotation. It is not the force alone, but

how and where the force is applied is important

in rotational motion.

The rotational analogue of force in linear

motion is moment of force. It is also referred to

as torque or couple. (We shall use the words

moment of force and torque interchangeably.)

We shall first define the moment of force for the

special case of a single particle. Later on we

shall extend the concept to systems of particles

including rigid bodies. We shall also relate it to

a change in the state of rotational motion, i.e. is

angular acceleration of a rigid body.
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Fig. 7.18 τ = τ = τ = τ = τ = r ×  ×  ×  ×  × F, τ τ τ τ τ is perpendicular to the plane

containing r and F, and its direction is

given by the right handed screw rule.

If a force acts on a single particle at a point
P whose position with respect to the origin O is
given by the position vector r (Fig. 7.18), the
moment of the force acting on the particle with
respect to the origin O is defined as the vector
product

τττττ = r     × F (7.23)
The moment of force (or torque) is a vector

quantity. The symbol τ τ τ τ τ stands for the Greek
letter tau. The magnitude of τ τ τ τ τ is

τ = r F sinθ (7.24a)
where r is the magnitude of the position vector
r, i.e. the length OP, F is the magnitude of force
F and θ     is the angle between r and F as
shown.

Moment of force has dimensions M L2 T -2.
Its dimensions are the same as those of work
or energy. It is, however, a very different physical
quantity than work. Moment of a force is a
vector, while work is a scalar. The SI unit of
moment of force is newton metre (N m). The
magnitude of the moment of force may be
written

( sin )r F r Fτ θ ⊥= = (7.24b)

or sinr F rFτ θ ⊥= = (7.24c)

where r⊥  = r sinθ is the perpendicular distance

of the line of action of F from the origin and
( sin )F F θ⊥ = is the component of F in the

direction perpendicular to r. Note that τ = 0 if
r = 0, F = 0 or θ = 00 or 1800 . Thus, the moment
of a force vanishes if either the magnitude of
the force is zero, or if the line of action of the
force passes through the origin.

One may note that since  r × F is a vector
product, properties of a vector product of two
vectors apply to it. If the direction of F is
reversed, the direction of the moment of force
is reversed. If directions of both r and F are
reversed, the direction of the moment of force
remains the same.

7.7.2 Angular momentum of a particle

Just as the moment of a force is the rotational
analogue of force in linear motion, the quantity
angular momentum is the rotational analogue
of linear momentum. We shall first define
angular momentum for the special case of a
single particle and look at its usefulness in the
context of single particle motion. We shall then
extend the definition of angular momentum to
systems of particles including rigid bodies.

Like moment of a force, angular momentum
is also a vector product. It could also be referred
to as moment of (linear) momentum. From this
term one could guess how angular momentum
is defined.

Consider a particle of mass m and linear
momentum p at a position r relative to the origin
O. The angular momentum l of the particle with
respect to the origin O is defined to be

l = r ×  ×  ×  ×  × p (7.25a)
The magnitude of the angular momentum

vector is

sinl r p= θ (7.26a)

where p is the magnitude of p and θ is the angle
between r and p. We may write

l r p⊥=  or r p⊥                                   (7.26b)

where r⊥  (= r sinθ) is the perpendicular distance

of the directional line of  p from the origin and

( sin )p p θ⊥ =  is the component of p in a direction

perpendicular to r. We expect the angular
momentum to be zero (l = 0), if the linear
momentum vanishes (p = 0), if the particle is at
the origin (r = 0), or if the directional line of  p
passes through the origin θ = 00 or 1800.
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7.10.1 Theorem of parallel axes

This theorem is applicable to a body of any
shape. It allows to find the moment of inertia of
a body about any axis, given the moment of
inertia of the body about a parallel axis through
the centre of mass of the body. We shall only
state this theorem and not give its proof. We
shall, however, apply it to a few simple situations
which will be enough to convince us about the
usefulness of the theorem. The theorem may
be stated as follows:

The moment of inertia of a body about any
axis is equal to the sum of the moment of
inertia of the body about a parallel axis passing
through its centre of mass and the product of
its mass and the square of the distance
between the two parallel axes. As shown in
the Fig. 7.31, z and z′ are two parallel axes,
separated by a distance a. The z-axis passes
through the centre of mass O of the rigid body.
Then according to the theorem of parallel axes

I
z′

 = I
z 
+ Ma2 (7.37)

where I
z
  and  I

z′ are the moments of inertia of the
body about the z and z′ axes respectively, M is the
total mass of the body and a is the perpendicular
distance between the two parallel axes.

Example 7.11  What is the moment of
inertia of a rod of mass M, length l about
an axis perpendicular to it through one
end?

Answer    For the rod of mass M and length l,
I = Ml2/12. Using the parallel axes theorem,
I′ = I + Ma2 with  a = l/2  we get,

22 2

12 2 3

l l Ml
I M M

 ′ = + = 
 

We can check this independently since I is
half the moment of inertia of a rod of mass 2M

and length 2l about its midpoint,

2 24 1
2 .

12 2 3

l Ml
I M′ = × = t

Example 7.12 What is the moment of
inertia of a ring about a tangent to the
circle of the ring?

Answer
The tangent to the ring in the plane of the ring
is parallel to one of the diameters of the ring.

The distance between these two parallel axes is
R, the radius of the ring. Using the parallel axes
theorem,

Fig. 7.32

I I MR
MR

MR MRdiatangent = + = + =2
2

2 2

2

3

2
.   t

7.11 KINEMATICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

We have already indicated the analogy between
rotational motion and translational motion. For

example, the angular velocity ωωωωω plays the same
role in rotation as the linear velocity v in
translation. We wish to take this analogy

further. In doing so we shall restrict the
discussion only to rotation about fixed axis. This

case of motion involves only one degree of
freedom, i.e., needs only one independent
variable to describe the motion. This in

translation corresponds to linear motion. This
section is limited only to kinematics. We shall

turn to dynamics in later sections.

We recall that for specifying the angular
displacement of the rotating body we take any
particle like P (Fig.7.33) of the body. Its angular
displacement θ in the plane it moves is the
angular displacement of the whole body; θ is
measured from a fixed direction in the plane of

motion of P, which we take to be the x′-axis,

chosen parallel to the x-axis. Note, as shown,
the axis of rotation is the z – axis and the plane
of the motion of the particle is the x - y plane.
Fig. 7.33 also shows θ

0
, the angular

displacement at t = 0.

We also recall that the angular velocity is
the time rate of change of angular displacement,
ω = dθ/dt. Note since the axis of rotation is fixed,
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u

u
there is no need to treat angular velocity as a

vector. Further, the angular acceleration, α =

dω/dt.

The kinematical quantities in rotational
motion, angular displacement (θ), angular
velocity (ω) and angular acceleration (α)
respectively are analogous to kinematic
quantities in linear motion, displacement (x ),
velocity (v) and acceleration (a). We know the
kinematical equations of linear motion with
uniform (i.e. constant) acceleration:

v = v
0
 + at (a)

2
0 0

1

2
x x t atυ= + + (b)

2 2
0 2axυ υ= + (c)

where x
0
 = initial displacement and v

0
= initial

velocity. The word ‘initial’ refers to values of the
quantities at t = 0

The corresponding kinematic equations for
rotational motion with uniform angular
acceleration are:

0 t= +ω ω α (7.38)

2
0 0

1

2
t t= + +θ θ ω α (7.39)

and 2 2
0 02 ( – )= +ω ω α θ θ (7.40)

where θ
0
= initial angular displacement of the

rotating body, and ω
0 
= initial angular velocity

of the body.

Fig.7.33 Specifying the angular position of a rigid

body.

Example 7.13  Obtain Eq. (7.38) from first
principles.

Answer   The angular acceleration is uniform,
hence

d

d
constant

t

ω
α= = (i)

Integrating this equation,

ω α= +∫ dt c

   (as is constant)t cα α= +
At t = 0,  ω = ω

0 
(given)

From (i) we get at t = 0, ω = c = ω
0

Thus, ω = αt + ω
0 
 as required.

With the definition of ω = dθ/dt we may
integrate Eq. (7.38) to get Eq. (7.39). This
derivation and the derivation of Eq. (7.40) is
left as an exercise.

Example 7.14  The angular speed of a
motor wheel is increased from 1200 rpm
to 3120 rpm in 16 seconds. (i) What is its
angular acceleration, assuming the
acceleration to be uniform? (ii) How many
revolutions does the engine make during
this time?

Answer
(i) We shall use ω = ω

0 
+ αt

ω
0
 =  initial angular speed in rad/s

=  2π × angular speed in rev/s

=  
2 angular speed in rev/min 

60 s/min

π ×

=  
2 1200 

rad/s
60

π ×

= 40π  rad/s

Similarly ω = final angular speed in rad/s

= 
2 3120 

rad/s
60

π ×

= 2π × 52 rad/s

= 104 π rad/s

∴ Angular acceleration

0

t

ω ω
α

−
= = 4 π  rad/s2

2020-21



SYSTEMS OF PARTICLES AND ROTATIONAL MOTION 169

The angular acceleration of the engine

= 4π rad/s2

(ii) The angular displacement in time t is
given by

2
0

1

2
t tθ ω α= +

21
(40 16 4 16 )

2
π π= × + × ×  rad

(640 512 )π π= +  rad

= 1152π rad

Number of revolutions = 
1152

576
2

π
π

=      t

7.12 DYNAMICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

Table 7.2 lists quantities associated with linear
motion and their analogues in rotational motion.
We have already compared kinematics of the
two motions. Also, we know that in rotational
motion moment of inertia and torque play the
same role as mass and force respectively in
linear motion. Given this we should be able to
guess what the other analogues indicated in the
table are. For example, we know that in linear
motion, work done is given by F dx, in rotational

motion about a fixed axis it should be dτ θ ,

since we already know the correspondence

d dx θ→  and F τ→ . It is, however, necessary

that these correspondences are established on
sound dynamical considerations. This is what
we now turn to.

Before we begin, we note a simplification
that arises in the case of rotational motion
about a fixed axis. Since the axis is fixed, only
those components of torques, which are along
the direction of the fixed axis need to be
considered in our discussion. Only these
components can cause the body to rotate about
the axis. A component of the torque
perpendicular to the axis of rotation will tend
to turn the axis from its position. We specifically
assume that there will arise necessary forces of
constraint to cancel the effect of the
perpendicular components of the (external)
torques, so that the fixed position of the axis
will be maintained. The perpendicular
components of the torques, therefore need not
be taken into account. This means that for our
calculation of torques on a rigid body:

(1) We need to consider only those forces that
lie in planes perpendicular to the axis.
Forces which are parallel to the axis will
give torques perpendicular to the axis and
need not be taken into account.

(2) We need to consider only those components
of the position vectors which are
perpendicular to the axis. Components of
position vectors along the axis will result in
torques perpendicular to the axis and need
not be taken into account.

Work done by a torque

Fig. 7.34 Work done by a force F
1 
acting on a particle

of a body rotating about a fixed axis; the

particle describes a circular path with

centre C on the axis;  arc P
1
P′

1
(ds

1
) gives

the displacement of the particle.

Figure 7.34 shows a cross-section of a rigid
body rotating about a fixed axis, which is taken
as the z-axis (perpendicular to the plane of the
page; see Fig. 7.33). As said above we need to
consider only those forces which lie in planes
perpendicular to the axis. Let F

1
 be one such

typical force acting as shown on a particle of
the body at point P

1
 with its line of action in a

plane perpendicular to the axis. For convenience
we call  this to be the x′–y′ plane (coincident
with the plane of the page). The particle at P

1

describes a circular path of radius r
1
 with centre

C on the axis; CP
1
 = r

1
.

In time ∆t, the point moves to the position
P

1
′. The displacement of the particle ds

1
,

therefore, has magnitude ds
1
 = r

1
dθ and

direction tangential at P
1
 to the circular path

as shown. Here dθ is the angular displacement

of the particle, dθ = 1 1P CP∠ ′ .The work done by

the force on the particle is

dW
1
 = F

1
. ds

1
= F

1
ds

1
 cosφ

1
= F

1
(r

1 
dθ)sinα

1

where φ
1
 is the angle between F

1
 and the tangent
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