Sequences & Series

CLASS - XI

Chapter – 9

SEQUENCES AND SERIES

MODULE – 3 of 3

Distance Learning Programme: An initiative by AEES, Mumbai

7. Geometric Progression (G . P.)

Sequence of numbers such that the quotient of any two successive members of the sequence is a constant

Some Examples of G.P

- ▶ 1, 1, 1, 1, 1, 1, 1, 1, 1.....
- > 2, 4, 8, 16, 32, 64, 128
- > 243, 81, 27, 9, 3, 1, 1/3, 1/9
- ▶ 1, -3, 9, -27, 81, -243, 729

Let $a_1, a_2, a_3, ..., a_n, ...$ is geometric sequence or geometric progression.

Here a_1 is the *first term (a)* and the constant quotient between consecutive terms is called the *common ratio (r)* of the G.P.

So, if first term is a and common ratio is r then

 $G.P \rightarrow a, ar, ar^2, ar^3, ar^4, \dots$

Here in G.P.

Hence, The General term of a G.P is

 $a_n = ar^{n-1}$

BASHUKI NATH, PGT

Sum to n terms of a G.P.

Let $a_1, a_2, a_3, ..., a_n, ...$ is geometric sequence or geometric progression. If S_n be the sum of first *n* terms of the G.P

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

$$S_n = a + ar + ar^2 + ar^3 \dots + ar^{n-1}$$
------ (1)

If r = l

 $S_n = a + a + a + a + a + a + \dots n$ times $S_n = na$

If $r \neq l$

Multiply r both sides in equation (1)

$$rS_n = r(a + ar + ar^2 + ar^3 ... + ar^{n-1})$$

 $rS_n = ar + ar^2 + ar^3 ... + ar^{n-1} + ar^n$

AECS, ANUPURAM

BASHUKI NATH, PGT

----- (2)

 \mathfrak{I}_n

Now from equation (1) – equation (2)

$$S_n - rS_n = (a + ar + ar^2 + ar^3 ... + ar^{n-1}) - (ar + ar^2 + ar^3 ... + ar^{n-1} + ar^n)$$

 $(1 - r) S_n = a + (ar + ar^2 + ar^3 ... + ar^{n-1}) - (ar + ar^2 + ar^3 ... + ar^{n-1}) - ar^n$
 $(1 - r) S_n = a - ar^n$

Some Examples

1 - r

Example-1

Find the 10th and *n*th terms of the G.P. 5, 25, 125,....

Solution

Here a = 5 and r = 25/5 = 5. Thus, $a_{10} = 5(5)^{10-1} = 5(5)^9 = 5^{10}$ and $a_n = ar^{n-1} = 5(5)^{n-1} = 5^n$.

AECS, ANUPURAM

Example-2

Which term of the G.P., 2, 8, 32, ... up to *n* terms is 131072?

Solution

Let 131072 be the *n*th term of the given G.P.

Here a = 2 and r = 8/2 = 4.

Therefore

 $131072 = a_n = 2(4)^{n-1}$ $\frac{131072}{2} = 4^{n-1}$ $65536 = 4^{n-1}$ $4^8 = 4^{n-1}$ n-1 = 8,i.e., n = 9.

Hence, 131072 is the 9th term of the G.P.

Module – 3/3

Example-3

Find the sum of first 5 terms of the geometric series $1 + 3 + 9 + \dots$

Solution

Here a = 1 and r = 3/1 = 3

As
$$S_n = \frac{a (r^n - 1)}{r - 1}$$

So $S_5 = \frac{1(3^5 - 1)}{3 - 1} = \frac{243 - 1}{2} = \frac{242}{2} = 121$

8. Geometric Mean (G.M.)

One Arithmetic Mean

Given two numbers a and b. We can insert a number G between them so that a, G, b is an G.P. Such a number G is called the *geometric mean* (G.M.) of the numbers a and b.

As *a*, G, *b* is in G.P So

$$\frac{G}{a} = \frac{b}{G}$$
$$G^2 = ab$$
$$G = \sqrt{ab}$$

The geometric mean of two positive numbers a and b is the number \sqrt{ab} .

Example

Find the geometric mean of 2 and 8.

Solution

Geometric mean
$$G = \sqrt{2 \times 8} = \sqrt{16} = 4$$

AECS, ANUPURAM

> *n* Geometric Means

Given two numbers a and b. We can insert n numbers G_1 , G_2 , G_3 ,, G_n between them so that a, G_1 , G_2 , G_3 ,, G_n , b is an G.P.

Here,

 1^{st} term is *a* and (n+2)th term is *b*.

$$a_{n+2} = a \cdot r^{n+2-1}$$
$$b = a \cdot r^{n+1}$$
$$\frac{b}{a} = r^{n+1}$$
$$r = \left(\frac{b}{a}\right)^{1/n+1}$$

AECS, ANUPURAM

So $G_1 = a.r$ $G_2 = a.r^2$ $G_3 = a.r^3$ \dots $G_n = a.r^n$

Example

Insert three numbers between 1 and 256 so that the resulting sequence is a G.P.

Solution

Let G_1 , G_2 , G_3 be three numbers between 1 and 256 such that 1, G_1 , G_2 , G_3 , 256 is a G.P.

Here 256 = 1. $r^4 \Rightarrow r = \pm 4$ (Taking real roots only) Hence, for r = 4, $G_1 = ar = 4$, $G_2 = ar^2 = 16$, $G_3 = ar^3 = 64$ Similarly, for r = -4, numbers are -4,16 and -64.

AECS, ANUPURAM

Class – XI

9. Relationship Between A.M. and G.M.

Let A and G be A.M. and G.M. of two given positive real numbers a and b, respectively.

Then $A = \frac{a+b}{2}$ and $G = \sqrt{ab}$ Thus, we have $A - G = \frac{a+b}{2} - \sqrt{ab}$ $A - G = \frac{a+b-2\sqrt{ab}}{2}$ $A - G = \frac{\sqrt{a^2} + \sqrt{b^2} - 2\sqrt{ab}}{2}$ $A - G = \frac{(\sqrt{a} - \sqrt{b})^2}{2} \ge 0$

Hence,

AECS, ANUPURAM

BASHUKI NATH, PGT

Page **11** of **11**