

SUBJECT : MATHEMATICS LESSON: STRAIGHT LINES MODULE – 3/3

TEACHER : SHERLIN G, PGT(SS) AECS,KUDANKULAM

- In this module we will study about
- General form of equation of straight lines
- Conversion of general equation into different forms
- Distance of a point from a line
- Distance between two parallel lines
- Example problems
- Problems for practice

General Form of a line:

- We know that general equation of first degree in two variables is Ax + By + C = o, where A, B and C are constants.
- Also graph of he above equation is always a straight line .
- Hence we get the general equation of a straight line will be of the form Ax + By + C = o.
- <u>Different forms of Ax + By + C = o</u>
- The general equation of the straight line can be reduced into various form of the equation of the line.

Slope-interept form:

If B \neq o, then Ax + By + C = o can be written as y = $-\frac{A}{B}x - \frac{C}{B}$, this is of the form y = mx + c

where
$$m = -\frac{A}{B} = -\frac{Coefficient \ of \ x}{Coefficient \ of \ y}$$
 and $C = -\frac{C}{B} = -\frac{Cconstant \ term}{coefficient \ of \ y}$

b. Intercept form:

If $C \neq o$, then Ax + By + C = o can be written as

Ax + By = -C

$$\Rightarrow \frac{x}{-\frac{C}{A}} + \frac{y}{-\frac{C}{B}} = 1, \text{ this is of the form } \frac{x}{a} + \frac{y}{b} = 1,$$

where $a = -\frac{C}{A}$ and $b = -\frac{C}{B}$

c. Normal form:

Let $x \cos w + y \sin w = p$ -----(i) be the normal form of the line represented by the line Ax + By + C = o (or) Ax + By = -C .----(ii)

If both the equation are same then,

$$\frac{A}{cosw} = \frac{B}{sinw} = -\frac{C}{p}$$

This gives $cosw = -\frac{Ap}{C}$ and $sinw = -\frac{Bp}{C}$

Now,
$$\sin^2 w + \cos^2 w = (-\frac{Ap}{C})^2 + (-\frac{Bp}{C})^2$$

$$\Rightarrow 1 = \frac{p^2 (A^2 + B^2)}{C^2} \Rightarrow p^2 = \frac{C^2}{(A^2 + B^2)}$$
$$\Rightarrow p = \pm \frac{C}{\sqrt{A^2 + B^2}}$$

Therefore,
$$\cos w = \pm \frac{A}{\sqrt{A^2 + B^2}}$$
 and
 $\sin w = \pm \frac{B}{\sqrt{A^2 + B^2}}$

Thus, the normal form of the equation Ax + By + C = o becomes

 $x \cos w + y \sin w = p$, where $\cos w$, $\sin w$ and p

can be found from the above

Distance of a point from a line

Let L be the line Ax + By + C = 0, whose distance from the point P(x₁,y₁) is 'd'. Draw a perpendicular PM from the point p to the line. Let the line meets x and y axes at Q and R respectively. The coordinates of Q and R are $Q\left(-\frac{c}{A},0\right)$ and $R\left(0,-\frac{c}{B}\right)$

Now, area of triangle PQR is given by Area(ΔPQR) = $\frac{1}{2}$.PM.QR = $\frac{1}{2}$.d.QR

$$\Rightarrow d = \frac{2.Area(\Delta PQR)}{QR} \quad -----(1)$$

$$QR = \sqrt{\left(0 + \frac{c}{A}\right)^{2} + \left(\frac{c}{B} - 0\right)^{2}} = \frac{c}{AB}\sqrt{(A)^{2} + (B)^{2}} - \dots - (2)$$
Also, Area $(\Delta PQR) = \frac{1}{2} \left| x_{1} \left(0 + \frac{c}{B}\right) + \left(-\frac{c}{A}\right) \left(-\frac{c}{B} - y_{1}\right) + 0(y_{1} - 0) \right|$

$$= \frac{1}{2} \left| x_{1} \left(\frac{c}{B}\right) + y_{1} \left(\frac{c}{A}\right) + \frac{c^{2}}{AB} \right| = \frac{1}{2} \cdot \frac{c}{AB} |Ax_{1} + By_{1} + C|$$

$$\Rightarrow 2 \operatorname{Area}(\Delta PQR) = \frac{c}{AB} |Ax_{1} + By_{1} + C| - \dots - (3)$$

Substituting the value of (2) and (3) in (1) we get ,

$$d = \frac{2.Area(\Delta PQR)}{QR} \implies d = \frac{\frac{C}{AB}|Ax_1 + By_1 + C|}{\frac{C}{AB}\sqrt{(A)^2 + (B)^2}} = \frac{|Ax_1 + By_1 + C|}{\sqrt{(A)^2 + (B)^2}}$$

Thus, the distance from a point $P(x_1, y_1)$ to the line Ax + By + C = 0 is

$$\mathbf{d} = \frac{|Ax_1 + By_1 + C|}{\sqrt{(A)^2 + (B)^2}}$$

<u>Note</u>: If the point P is the origin the distance becomes,

$$\mathbf{d} = \frac{|A(\mathbf{0}) + B(\mathbf{0}) + C|}{\sqrt{(A)^2 + (B)^2}} = \frac{|C|}{\sqrt{(A)^2 + (B)^2}}$$

Distance between two parallel lines

Let $Ax + By + C_1 = o$ and $Ax + By + C_2 = o$ be two parallel lines. (Two parallel lines differ only in their constant terms as their slopes are equal)

The distance between the parallel lines is

$$\mathbf{d} = \frac{|C1 - C2|}{\sqrt{(A)^2 + (B)^2}}$$

Example problems

Example-1. Find the distance between the parallel lines 3x - 4y + 7 = 0 and 3x - 4y + 5 = 0

Solution: Here A = 3, B = -4, C1 = 7 and C2 = 5.

Distance between the lines is

$$\mathbf{d} = \frac{|C1-C2|}{\sqrt{(A)^2+(B)^2}} = \frac{|7-5|}{\sqrt{(3)^2+(-4)^2}} = \frac{2}{5}.$$

Example -2

Find the equation of the line perpendicular to the line x - 2y + 3 = 0 and passing through the point (1,-2).

Solution:

Given line is x - 2y + 3 = 0Slope of the line M = $-\frac{coeff.of x}{coeff.of y} = -\frac{1}{-2} = \frac{1}{2}$ Since the line is perpendicular to the given line, slope of the required line is m = -2So equation of the line is in slope point form $y-y_1 = m(x-x_1) \Rightarrow y-(-2) = -2(x-1)$ \Rightarrow y + 2 = -2x + 2 \Rightarrow 2X + Y = 0 Which is the required line

Example -3:

Find the distance of the line 4x - y = 0 from the point P(4,1) measured along the line which is making an angle of 135° with the positive x-axis

Solution:

Given line is 4x-y = 0 ------(1) Equation of the line which makes an angle 135° with x –axis and passing through the point (4,1) is

Solving (1) and (2) we get the point Q as (1,4) Given point P is (4,1) So from the problem, required distance $PQ = \sqrt{(1-4)^2 + (4-1)^2}$ $= \sqrt{9+9}$ $= 3\sqrt{2}$ units

Example -4:

Find the value of k so that the line 2x + ky - 9 = 0 may be

- (i) Parallel to 3x 4y + 7 = 0
- (ii) Perpendicular to 3y + 2x 1 = 0

Solution:

Given line is 2x + ky - 9 = 0Slope of the line is $M = -\frac{2}{\nu}$ -----(1) (i).Slope of the line 3x - 4y + 7 = 0 is $m = \frac{3}{4}$ -----(2) Since the two lines are parallel M = m $\Rightarrow -\frac{2}{k} = \frac{3}{k} \Rightarrow k = -\frac{8}{3}$ (ii). Slope of the line 3x - 2y - 1 = 0 is $\frac{-3}{-2} = \frac{3}{2}$ Slope perpendicular to the above line $m_1 = -\frac{2}{2}$ -----(3) Since the given line is perpendicular to (3) $M.m_1 = -1 \Rightarrow \left(-\frac{2}{k}\right) \cdot \left(-\frac{2}{3}\right) = -1$ $\Rightarrow 4 = -3k \Rightarrow k = -\frac{4}{3}$

Example-5:

If p is the length of perpendicular from the origin to the line $\frac{x}{a} + \frac{y}{b} = 1$ which makes intercepts 'a' and 'b' with the axes, prove that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$.

Solution:

Given line is
$$\frac{x}{a} + \frac{y}{b} - 1 = 0$$
.----(i)

Since 'p'is the length of perpendicular from the origin (0,0) to the line (i),

$$p = \frac{|-1|}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2}} \Rightarrow p^2 = \frac{1}{\frac{1}{a^2} + \frac{1}{b^2}}$$
$$\Rightarrow \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}, \text{ as required.}$$

Example – 6

A variable line passes through a fixed point P. The algebraic sum of the perpendiculars dawn from the point A(2,0),B(0,2)and C (1,1) on the line is zero. Find the coordinate of the point P.

Solution:

Let the slope of the line is 'm' and the fixed point P is (x_1, y_1) . So, the equation of the line is $y - y_1 = m(x - x_1) - \dots - (1)$ The perpendicular distance from A(2,0) to line (1) is $d_1 = \left| \frac{0 - y_1 - m(2 - x_1)}{\sqrt{1 + m^2}} \right|$

Similarly,

The perpendicular distance from B(0,2) to line (1) is $d_{2} = \left| \frac{2 - y_{1} - m(0 - x_{1})}{\sqrt{1 + m^{2}}} \right| \quad \text{and}$ distance from C(1,1) to the line (1) is

$$d_{3} = \left| \frac{1 - y_{1} - m(1 - x_{1})}{\sqrt{1 + m^{2}}} \right|$$

According to the problem , $d_{1} + d_{2} + d_{3} = 0$
$$\Rightarrow \quad \left| \frac{-y_{1} - 2m + mx_{1} + 2 - y_{1} + mx_{1} + 1 - y_{1} - m + mx_{1})}{\sqrt{1 + m^{2}}} \right| = 0$$

$$\Rightarrow -3y_{1} - 3m + 3mx_{1} + 3 = 0$$

$$\Rightarrow -y_{1} - m + mx_{1} + 1 = 0$$

Since the point (1,1,) lies on this , the point P is (1,1).

Problem for Practice:

All problems from Exercise10.3 and miscellaneous exercise from class XI NCERT mathematics Text book.