

Class: XI Chemistry Chapter 7: EQUILIBRIUM Module 5 of 6 From : **Dr. Rinku Gupta PGT(Chemistry)** A.E.C.S. No.4, Rawabhata

Contents

This module contains:

- Ionisation of Acids and Bases
- Dissociation Constants of Acids and Bases
- Common Ion effect
- Self Ionisation of Water& Ionic Product

Ionisation of Acids and Bases

Ionisation of Acids in Water

Dissociation: $HA(aq) + H_2O(\ell) = H_3O^+(aq) + A^-(aq)$ or We can write $HA(aq) = H^+(aq) + A^-(aq)$

0

The first equation shows H_2O , which pulls the H^+ from the acid.

Ionisation of Acid in Water

Dissociation in Strong Acid: $HA(aq) + H_2O(\ell) \rightarrow H_3O^+(aq) + A^-(aq)$ or We can write $HA(aq) \rightarrow H^+(aq) + A^-(aq)$ A strong acid almost fully dissociates. Note: The yield sign drawn in the right side

0

only to show the almost complete ionization of strong acids.

Ionisation of Acid in Water

Ionisation of Acid in Water

Common Strong Acids

- $H_2 SO_4$
- HNO_3
- *HClO*₄
- *HCl,*
- HBr,
- HI (Remember: HF is weak)

In general organic acids are weak. Thumb Rule for oxyacids:

No. of Oxygen – No. of Hydrogen \ge 2, than the acid is strong.

(Example: H_3PO_4 is weak whereas H_2SO_4 is strong)

Dissociation Constant of Weak Acid

Acid Dissociation Constant for a Weak Monoprotic Acid: $HA(aq) + H_2O(l) = H_3O^+(aq) + A^-(aq)$

Applying Law of Chemical Equilibrium:

0

Ka = [<u>H₃O⁺] [A⁻]</u> or Ka = [<u>H⁺] [A⁻]</u> [HA] [HA] *Thumb Rule:*

For a weak acid \rightarrow Ka is small.

For strong acids → Ka is large .cannot be calculated accurately

Calculation of H_3O^+ Ion & Degree of Ionisation

Calculation of H_3O^+ Ion & Degree ofIonisation($\underline{\alpha}$):Ka = $[H^+][A^-] = (C\alpha) (C\alpha)$ [HA]C(1- α)

Ka = C α^2 For weak electrolyte 1- α = 1 Therefor $\alpha = \sqrt{(Ka) / C}$

Concentration of $(H_3O^+) = C\alpha$

Ionisation of Bases

<u>Dissociation:</u>

 $B(aq) + H_2O(\ell) \stackrel{=}{=} BH^+(aq) + OH^-(aq)$

or

 $BOH \rightarrow B^{+}(aq) + OH^{-}(aq)$ $NaOH(s) \rightarrow Na^{+}(aq) + OH^{-}(aq)$

- A strong base almost fully dissociates. The equilibrium shifts to the right.
- Note: The yield may be drawn to point only to the right to show the almost complete ionization of strong bases.

Examples: Hydroxides of Group I and Larger Metals of Group II.

 $Mg(OH)_2$ and $Ca(OH)_2$ are slightly soluble but whatever small amount dissolves, almost completely ionizes.

Dissociation Constant of Acid and Bases

Base Dissociation Constant for a Weak Base: $B(aq) + H_2O(l) \stackrel{=}{=} BH^+(aq) + OH^-(aq)$ Or $BOH(aq) \stackrel{=}{=} B^+(aq) + OH^-(aq)$

Applying Law of Chemical Equilibrium:

 $K_{b} = [BH^{+}][OH^{-}]$ or $K_{b} = [B^{+}][OH^{-}]$ [B] [BOH]

Thumb Rule:

0

For a weak base $\rightarrow K_b$ is small.

For strong bases $\rightarrow K_{b i}$ is large cannot be calculated accurately

Calculation of OH⁻ Ion & Degree of Ionisation

Calculation of OH⁻ Ion & Degree of Ionisation(α): $K_{b} = [B^{+}][OH^{-}] = (C\alpha) (C\alpha)$ $[BOH] C(1-\alpha)$ $K_{b} = C\alpha^{2}....$ For weak base 1- $\alpha = 1$ Therefor $\alpha = \sqrt{(K_{b})} / C$

Concentration of $(OH^{-}) = C\alpha$

Polyprotic Acids

An acid that can furnish more than one proton are called polyprotic acids.

- A polyprotic acid dissociates in a stepwise manner, one proton at a time.
- \checkmark Each dissociation of a proton, gives its own Ka value.
- The conjugate base in the first step is the acid in the second step.
- ✓ They are also known as polybasic acids.
- ✓ Examples: H₂SO₄, H₃PO₄

O

Polyprotic Acids and Bases

Triprotic:

 $H_3PO_4 = H^+ + H_2PO_4^-$; $K_{a1} = 7.5 \times 10^{-3}$ $H_2PO_4^- = H^+ + HPO_4^{-2-}$; $K_{a2} = 6.2 \times 10^{-8}$ $HPO4^{2-} = H^+ + PO_4^{-3-}$; $K_{a3} = 4.8 \times 10^{-13}$

 $K_{a1} > K_{a2} > K_{a3}$

• Each acid involved in dissociation steps is successively weaker.

Similarly polyhydroxy or polyacidic bases ionize in steps and have the corresponding dissociation constant k_{b1} , k_{b2} etc. Eg: Ba(OH)₂, Al(OH)₃

Common Ion effect

- When a compound containing an ion in **common** with an already dissolved substance is added to a solution at equilibrium, the equilibrium shifts to the left.
- This phenomenon is known as the common ion effect.

O

•The degree of ionization of a weak base or weak acid is suppressed by common ion effect.

•Common ion is an ion that is common to two or more components in a mixture of an ionic solution.

 Common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substances.

- The effect of common ion on ionization of Weak Base is as follows
- : CH_3COOH (aq) $\simeq CH_3COO^{-}(aq) + H^{+}(aq)$

 $CH_3COONa(aq) \longrightarrow CH_3COO^{-}(aq) + Na^{+}(aq)$

Common Ion

- CH_3COONa dissociates completely and produces high concentration of CH_3COO^2 .
- The high concentration of CH_3COO^2 will disturb the equilibrium of the dissociation of ethanoic acid, CH_3COOH .
- Equilibrium of acid shifts backward direction according to Le-Chatlier Principle, thus less CH₃COOH dissociates.

Common Ion effect

- The effect of common ion on ionization of Weak
 Base is as follows
 - $NH_4OH (aq) \longrightarrow NH_4^+ (aq) + OH^-(aq)$ $NH_4CI (aq) \longrightarrow NH_4^+ (aq) + CI^-(aq)$ Common lon
- Ionization of ammonium hydroxide is suppressed by addition of ammonium chloride or sodium hydroxide.

Self Ionisation of Water

Self Ionisation of Water

In <u>pure water (</u>no solute) water molecules behave as <u>both</u> an <u>acid</u> and <u>base</u>!!

It is called <u>amphoteric</u> meaning it will act as either an acid or a base depending on the situation.

e.g. $H_2O(1) + H_2O(1) \stackrel{=}{=} H_3O^+(aq) + OH^-(aq)$

This is called the <u>self-ionization</u> (auto-ionizaion) of water. Although the equilibrium lies far to the <u>left</u> it is very important to take into consideration, especially for <u>living</u> <u>systems</u>.

Self Ionisation of Water

- The <u>auto-ionization</u> of water is described by the equation:
 - $H_2O(I) + H_2O(I) = H_3O^+(aq) + OH^-(aq)$
- This <u>equilibrium</u> lies very much to the <u>left</u> i.e. mostly water.
- For <u>pure water</u> [OH⁻] = [H⁺]

When water molecules ionized, transferring a proton from one water

molecule to another producing a hydroxonium and hydroxide ion.

$$2H_2O(I) = H_3O^+(aq) + OH^-(aq)$$

$$H_2O(I) = H^+(aq) + OH^-(aq)$$

The equilibrium constant expression can be written as follows:

$$K_a = [H^+][OH^-]$$
[H_O]

 K_a is the ionization constant for water at 25°C.

Ka X $[H_2O] = [H^+] [OH^-]$

O

K_w = [H⁺] [OH⁻] K_w is called the <u>lonic product</u> of water.

• For pure water, at 25°C,

 $[H^+] = [OH^-] = 1 \times 10^{-7} M$

$$\therefore K_{w} = 1 \times 10^{-14} M^{2}$$

Ionizaztion of water K_a = K_w / 55.5 = 1.8 \times 10^{-16}

Note:

Temperature $\uparrow,\,K_w\,\uparrow\,$ because the dissociation of water is an endothermic process .

^oWe define an **aqueous solution** as being **neutral** when the [H⁺] = [OH⁻].

We define an <u>aqueous solution</u> as being <u>acidic</u> when $[H^+] > [OH^-]$.

We define an <u>aqueous solution</u> as being <u>basic</u> when $[H^+] < [OH^-]$.

However, in each case $Kw = 1 \times 10^{-14} M^2$ pKw = -Log Kw = 14

Relation between Ionization constant of a base and its conjugate acid: Kb X Ka = Kw *Similarly,For* an acid and its conjugate base: Ka X Kb = Kw

Module 5 of 6 Ends...