Atomic Energy Central School No.4, Rawatbhata Ch: 7 Equilibrium Module 5 (Worksheet 1)

Subject: Chemistry Class: XI

- Q.1. What is common ion effect?
- Q.2. What is ionic product?
- Q.3. How is the degree of dissociation of a weak base related to its molarity?
- Q.4. Why would the basic strength of NH₄OH decrease on addition of NH₄Cl?
- Q.5. Calculate the ionsation constant of water at 298 K.
- Q.6. At 25 °C, 4.2% of 0.10 M formic acid, HCOOH dissociated in aqueous solution. Calculate the acid dissociation constant, K_a for formic acid.
- Q.7. What is the relation between disassociation constant of Acid and its conjugate base.
- Q.8. What is meant by pK_w of a solution? What is its value at 298K.
- Q.9. Lionization constants K_a for formic acid and acetic acid are 17.7×10^{-5} and 1.77×10^{-5} . Which acid is stronger and how many times the other if equimolar concentrations of the two are taken?
- Q.10. What is the effect of temperature on ionic product of water and why?
- Q.11. What happens to the ionic product of water if some acid is added into water?
- Q.12. The ionization constant of HF, HCOOH and HCN at 298K are 6.8 X 10^{-4} , 1.8 X 10^{-4} and 4.8 X 10^{-9} respectively. Calculate the ionization constant of the corresponding conjugate base.

(Hint: $K_w = K_a \times K_b$)

- Q.13. What do you mean by polyprotic acid. Give reason for decrease of successive dissociation constant for them?
- Q.14. Acid dissociation constant, K_a for hydrofluoric acid HF at 25 °C is 6.8×10^{-4} M. For a solution of 0.20 M HF, calculate:
 - i. the concentration of hydronium ion at equilibrium
 - ii. degree of dissociation

(Hint: $\alpha = \sqrt{((K_a) / C)}$ and $[H_3O^+] = C\alpha$).

- Q.15. Base dissociation constant, K_b for ammonia solution, NH_3 at 25 °C is $1.8X10^{-5}$ M. For a solution of 0.50 M NH_3 , calculate:
 - i. the concentration of hydroxide ion at equilibrium
 - ii. % dissociation

(Hint: $\alpha = \sqrt{((K_b) / C)}$ and $[OH^-] = C\alpha$). **BEST OF LUCK****