Atomic Energy Central School No.4, Rawatbhata Chapter: 7 Equilibrium Module 6 (Worksheet 1

Subject: Chemistry

Class: XI

Solved Numerical:

Q. Calculate the pH of a buffer solution containing 0.25 moles / litre of formic acid (HCOOH) and 0.10 moles / litre of sodium formate (HCOONa). Ka for formic acid is 1.8×10^{-4} .

Solution:

Conc. Of acid = 0.25 MConc. Of salt = 0.10 Mand Ka = 1.8×10^{-4} So pka is:: pka = -log ka = -log 1.8×10^{-4} = - (log 1.8×10^{-4}) = - (log $1.8 + \log 10^{-4}$) = - (0.25 + (-4)] = - (-3.75) = 3.75Now, pH = pka + log ([salt] / [acid]) = $3.75 + \log 0.10 / 0.25 4$ = 3.75 - 0.397= 3.34Answer: The pH of a buffer solu

Answer: The pH of a buffer solution containing 0.25 M of formic acid and 0.10 M of sodium formate is 3.34.

Q.2 The solubility of $PbCl_2$ at 298 K is $2x10^{-2}$. Calculate the solubility product of $PbCl_2$ at this temperature.

Solution: Ksp= $x^{x}y^{y}(S)^{x+y}$ X= No of cation =1, y=No of Anion=2 Ksp= $1^{1}2^{2}(S)^{1+2}$ = $4S^{3}$ Ksp = $4 \times (2 \times 10^{-2})^{3} = 3.2 \times 10^{-6}$

Unsolved Problems:

Q.1. Define pH

- Q.2. Define Buffer solution and buffer capacity.
- Q.3. What is the pH Range of Human blood
- Q.4. A buffer solution is prepared by mixing 1.5 M NH₄Cl solution with 0.10 M NH3 solution. [$K_b = 1.8 \times 10^{-5}$]Calculate the pH of buffer solution
- Q.5. What pH do you expect for 10^{-8} M solution of an acid?
- Q.6. What is the difference between ionic product and solubility product?
- Q.7. Through a solution containing Cu^{2+} and Ni^{2+} , H_2S gas is passed after adding dil. HCl, which will precipitate out and why?
- Q.8. In a NaOH solution, $[OH^-]$ is 2.0 x 10⁻⁴ M. Calculate the pH of the solution at 25°C.

- Q.9. The pH of rainwater in a region was 6. Calculate the H⁺ ion concentration of the rainwater.
- Q.10. Calculate the pH of a 0.15 M acetic acid (CH₃COOH) solution, $K_a = 1.8 \times 10^{-5}$.
- Q.11. The pH of 0.06 M solution of formic acid (HCOOH) is 3.44. Calculate the K_a of the acid.
- Q.12. Calculate pH for the following solution.
 - a. 0.55 M CH₃COOH ($K_a = 1.8 \times 10^{-5}$)
 - b. 0.23 M NH₃ ($K_b = 1.8 \times 10^{-5}$)
 - c. 0.1 M HCI
 - d. 0.001 M KOH
 - e. 0.45 M HCN ($K_a = 4.9 \times 10^{-10}$)
- Q.13. The K_a for benzoic acid, (C₆H₅COOH) is 6.5x10⁻⁵. Calculate the pH of a 0.25 M benzoic acid solution.
- Q.14. The pH of an acid solution is 6.20. Calculate the K_a for the acid. The acid concentration is 0.01M.
- Q.15. Calculate the pH for 0.5M C_5H_5N . $K_b = 1.7 \times 10^{-9}$
- Q.16. Write the solubility product expression and state the units of K_{sp} for each of the following ionic compounds: a) $Ca_3(PO_4)_2$ b) Ag_2CO_3 c) $Zr_{3}(PO_{4)4}$
- Q.17. The solubility product of silver chromate(VI), Ag_2CrO_4 is 2.4 $\times 10^{-12}$ mol³dm⁻⁹. Calculate the concentration of $Ag^+(aq)$ and $CrO_4^{2-}(aq)$ in the saturated solution.
- Q.18. The solubility of silver sulphide, Ag_2S is 5.0×10^{-17} . Calculate the solubility product of Ag_2S .
- Q.19. Calculate the solubility of copper (II) hydroxide, Cu(OH)₂, in g L⁻¹.(K_{sp} Cu(OH)₂ = 2 x 10⁻¹ M³, Molar mass of Cu(OH)₂ = 97.57g mol⁻¹)