Atomic Energy Education Society, Mumbai Class XI Subject-Physics Chapter–4: Motion in a Plane Module 1/2

Prepared by H.P.Sharma , P.G.T.(S.S) A.E.C.S.Narora

CONTENTS

- Scalar and vector quantities;
- position and displacement vectors,
- general vectors and their notations;
- equality of vectors,
- multiplication of vectors by a real number;
- addition and subtraction of vectors,
- relative velocity,
- •Unit vector;
- resolution of a vector in a plane,
- rectangular components,
- Scalar and Vector product of vectors.

SCALARS :

•A scalar quantity is a quantity with magnitude only.

•It is specified completely by a single number, along with the proper unit.

Examples

- •The distance between two points,
- •Mass of an object,
- •The temperature of a body and
- •The time at which a certain event happened.

•The rules for combining scalars: are the rules of ordinary algebra.

Scalars can be added, subtracted, multiplied and divided just as the ordinary numbers

Vector Quantity :

- \succ It is a quantity that has both a magnitude and a direction
- It obeys the triangle law of addition or equivalently the parallelogram law of addition.
- So, a vector is specified by giving its magnitude by a number and its direction.

Examples

> Displacement, Velocity, Acceleration and Force etc.

Representation of Vectors

- \succ To represent a vector, we use a bold face type in some books.
- Thus, a velocity vector can be represented by a symbol v.
- Since bold face is difficult to produce, when written by hand, a vector is often
- \succ represented by an arrow placed over a letter, say \vec{v} .
- > Thus, both **v** and \vec{v} represent the velocity vector.
- > The magnitude of a vector is often called its absolute value, indicated by $|\mathbf{v}| = v$

Position and Displacement Vectors:

- ≻ Let us consider O as origin.
- > Let P and P' be the positions of the object at time t and t', respectively.
- > We join O and P by a straight line. Then, **OP** is the position vector of the object at time t.
- An arrow is marked at the head of this line. It is represented by a symbol r, i.e. OP = r.
- > Point P' is represented by another position vector, **OP'** denoted by **r**'.
- The length of the vector r represents the magnitude of the vector and its direction is the direction in which P lies as seen from O.
- If the object moves from P to P', the vector PP' (with tail at P and tip at P') is called the **displacement vector** corresponding to motion from point P (at time t) to point P' (at time t').
- Displacement vector is the straight line joining the initial and final positions

Displacement vector is independent on the actual path:

Displacement vector does not depend on the actual path undertaken by the object between the two positions.

- In the given figure, the initial and final positions as P and Q, the displacement vector is the same PQ for different paths of journey, say PABCQ, PDQ, and PBEFQ.
- Therefore, the magnitude of displacement is either less or equal to the path length of an object between two points.

Equality of Vectors:

Two vectors **A** and **B** are said to be equal if, and only if, they have the same magnitude and the same direction.

> In general, equality is indicated as A = B.

MULTIPLICATION OF VECTORS BY REAL NUMBERS:

(i) <u>Multiplying a vector A with a positive number:</u>

Multiplying a vector **A** with a positive number n gives a vector whose magnitude is changed by λ the factor \Box but the direction is the same as that of **A** :

 $\lambda \mathbf{A} = \lambda \mathbf{A} \quad \text{if } \lambda > 0.$

For example

If A is multiplied by 2, the resultant vector 2A is in the same direction as A and has a magnitude twice of |A| as shown in the given figure

(ii) Multiplying a vector A by a negative number:

Multiplying a vector **A** by a negative number λ gives a vector λ **A** whose direction is opposite to the direction of **A** and whose magnitude is λ times |**A**|.

For example

Multiplying a given vector A by negative numbers, say -1 and -1.5 gives vectors as shown in the given figure.

ADDITION OF VECTORS - GRAPHICAL METHOD

- > We shall now describe this law of addition using the graphical method.
- > Let us consider two vectors **A** and **B** that lie in a plane as shown in the figure (a)

The lengths of the line segments representing these vectors are proportional to the magnitude of the vectors.

To Find The Sum of A + B By Head-To-Tail Method:

- > We place vector **B** so that its tail is at the head of the vector **A**, as in Fig. (b).
- > Then, we join the tail of A to the head of B.
- > This line OQ represents a vector **R**,
- > That is, the sum of the vectors **A** and **B**.
- Since, in this procedure of vector addition, vectors are arranged head to tail, this graphical method is called the **head-to-tail method**.
- The two vectors and their resultant form three sides of a triangle, so this method is also known as triangle method of vector addition.
- > If we find the resultant of $\mathbf{B} + \mathbf{A}$ as in Fig.(c), the same vector \mathbf{R} is obtained. Thus, vector addition is **commutative**: $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
- > The addition of vectors also obeys the **associative law as** illustrated in Fig.(d).
- The result of adding vectors A and B first and then adding vector C is the same as the result of adding B and C first and then adding vector A :
- \succ (A + B) + C = A + (B + C)
- > Null Vector Or A Zero Vector :
- > Consider two vectors **A** and **A** shown in below figure.

- Their sum is A + (- A). Since the magnitudes of the two vectors are the same, but the directions are opposite,
- The resultant vector has zero magnitude and is represented by 0 called a null vector or a zero vector :

$$> \mathbf{A} - \mathbf{A} = \mathbf{0} \qquad |\mathbf{0}| = \mathbf{0}$$

Physical Meaning Of A Zero Vector:

> When the initial and final positions coincide, the displacement is a .null vector..

Subtraction of vectors:

> We define the difference of two vectors **A** and **B** as the sum of two vectors **A** and **- B**

It is shown in above figures .

> The vector - **B** is added to vector **A** to get $\mathbf{R}_2 = (\mathbf{A} - \mathbf{B})$. The vector $\mathbf{R}_1 = \mathbf{A} + \mathbf{B}$ is also shown in the same figure for comparison

Suppose we have two vectors **A** and **B**. To add these vectors, we bring their tails to a common origin O as shown in Fig. (a).

> Then we draw a line from the head of **A** parallel to **B** and another line from the head of **B** parallel to **A** to complete a parallelogram OQSP.

- > Now we join the point of the intersection of these two lines to the origin O.
- The resultant vector R is directed from the common origin O along the diagonal (OS) of the parallelogram [Fig.(b)].
- > In Fig.(c), the triangle law is used to obtain the resultant of A and B
- > And we see that the two methods yield the same result.
- > Thus, the two methods are equivalent.
- > Let **OP** and **OQ** represent the two vectors
- > **A** and **B** making an angle θ (Fig. 4.10). Then,
- using the parallelogram method of vector
- > addition, **OS** represents the resultant vector **R** :
- ≻ R = A + B

Law Of Parallelogram For Vector Addition:

It state that if two vectors are represented by two adjacent sides of a parallelogram then magnitude and direction of resultant vector is given by its intersection diagonal

Let **OP** and **OQ** represent the two vectors **A** and **B** making an angle θ (in the given Fig.) Then, using the parallelogram method of vector addition, **OS** represents the resultant vector **R**

R = A + B

SN is normal to OP and PM is normal to OS. From the geometry of the figure, $OS^2 = ON^2 + SN^2$ but $ON = OP + PN = A + B \cos \theta$ and $SN = B \sin \theta$ $OS^2 = (A + B \cos \theta)^2 + (B \sin \theta)^2$ or, $R^2 = A^2 + B^2 + 2AB \cos \theta$ $R = \sqrt{A^2 + B^2 + 2AB \cos \theta}$ This is known as the Law of cosines

In \triangle OSN, $SN = OS \sin \alpha = R \sin \alpha$, and in \triangle PSN, $SN = PS \sin \theta = B \sin \theta$ Therefore, $R \sin \alpha = B \sin \theta$

or,
$$\frac{R}{\sin \theta} = \frac{B}{\sin \alpha}$$

Similarly, $PM = A \sin \alpha = B \sin \beta$ or, $\frac{A}{\sin \beta} = \frac{B}{\sin \alpha}$

Combining above Eqs. we get

$$\frac{R}{\sin\theta} = \frac{A}{\sin\beta} = \frac{B}{\sin\alpha}$$

> This is known as the Law of sines.

$$\tan \alpha = \frac{SN}{ON}$$
$$\tan \alpha = \frac{B \sin \theta}{A + B \cos \theta}$$
This equation gives the direction of resultant vector.

RESOLUTION OF VECTORS:

Let a and b be any two non-zero vectors in a plane with different directions and let A be another vector in the same plane in below Fig.

- Fig (a) Two non-colinear vectors a and b. (b) Resolving a vector A in terms of vectors a and b.
- > A can be expressed as a sum of two vectors .
- > One obtained by multiplying **a** by a real number and
- > the other obtained by multiplying **b** by another real number.
- > To see this, let O and P be the tail and head of the vector **A**.
- Then, through O, draw a straight line parallel to a, and through P, a straight line parallel to b.
- > Let them intersect at Q. Then, we have
- \rightarrow A = OP = OQ + QP

- > But since **OQ** is parallel to **a**, and **QP** is parallel to **b**,
- > we can write : **OQ** = λ **a**, and **QP** = μ **b** where λ and μ are real numbers.
- > Therefore, $\mathbf{A} = \lambda \mathbf{a} + \mu \mathbf{b}$
- We say that A has been resolved into two component vectors λ a and µ b along a and b respectively.
- Using this method one can resolve a given vector into two component vectors along a set of two vectors.
- > all the three lie in the same plane.
- It is convenient to resolve a general vector along the axes of a rectangular coordinate system using vectors of unit magnitude. These are called **unit vectors**.

<u>Unit vectors</u>: A unit vector is a vector of unit magnitude and points in a particular direction.

$$\hat{r} = \frac{\overrightarrow{r}}{|r|}$$

It has no dimension and unit.

> It is used to specify a direction only.

Rectangular Unit Vectors:

> Unit vectors along the *x*-, *y* and *z*-axes of a rectangular coordinate system are denoted by \hat{i} , \hat{j} and \hat{k} respectively, as shown in Fig. (a).

- Since these are unit vectors, we have $|\hat{\mathbf{i}}| = |\hat{\mathbf{j}}| = |\hat{\mathbf{k}}| = 1$
- > These unit vectors are perpendicular to each other.
- In this text, they are printed in bold face with a cap (^) to distinguish them from other vectors.
- Since we are dealing with motion in two dimensions in this chapter, we require use of only two unit vectors.
- > If we multiply a unit vector, say **n** by a scalar, the result is a vector $\lambda = \lambda \mathbf{n}$.
- > In general, a vector **A** can be written as $\mathbf{A} = |\mathbf{A}| \mathbf{n}$
- \succ where **n** is a unit vector along **A**.

- We can now resolve a vector A in terms of component vectors that lie along unit vectors i and "j.
- > Consider a vector **A** that lies in x-y plane as shown in Fig. (b).
- > We draw lines from the head of A perpendicular to the coordinate axes as in Fig. (b), and get vectors A_1 and A_2 such that $A_1 + A_2 = A$.
- Since A1 is parallel to 'i and A2 is parallel to "j,
- \blacktriangleright we have : A1 = Ax "i, A2 = Ay "j where Ax and Ay are real numbers.
- Thus, **A** = Ax "**i** + Ay "**j**
- \succ This is represented in Fig.(c).
- > The quantities Ax and Ay are called x-, and y- components of the vector **A**.
- > Note that Ax is itself not a vector, but Ax "i is a vector, and so is Ay"j.
- > Using simple trigonometry, we can express Ax and Ay in terms of the magnitude of **A** and the angle θ it makes with the *x*-axis :
- \Rightarrow $Ax = A \cos \theta$
- $ightarrow Ay = A \sin \theta$

Resolution Vector Into Three Dimensions.

- The same procedure can be used to resolve a general vector A into three components along x-, y-, and z-axes in three dimensions.
- > If α , β , and γ are the angles between **A** and the *x*-, *y*-, and *z*-axes, respectively

- > From Fig. (d), we have
- > $A_x = A \cos \alpha$, $A_y = A \cos \beta$, $A_z = A \cos \gamma$
- > In general, we have $A=A_x i+A_y j+A_z k$
- > The magnitude of vector A is

$\mathsf{A} = \left[A_x^2 + A_y^2 + A_z^2\right]^{1/2}$

A position vector r can be expressed as

 $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ where x, y, and z are the components of **r** along x-, y-, z-axes, respectively.

RELATIVE VELOCITY IN TWO DIMENSIONS:

- The concept of relative velocity, for motion along a straight line, can be easily extended to include motion in a plane or in three dimensions.
- > Suppose that two objects A and B are moving with velocities v_A and v_B (each with respect to some common frame of reference, say ground.).
- > Then, velocity of object A relative to that of B is :

 $V_{AB} = V_A - V_B$

> and similarly, the velocity of object B relative to that of A is :

 $V_{BA} = V_{B} \cdot V_{A}$

Therfore

 $V_{AB} = -V_{BA}$

and
$$[V_{AB}] = |V_{BA}|$$

The Scalar Product:

- The scalar product or dot product of any two vectors A and B, denoted as A. B (read A dot B) is defined as
- > **A.B** = $A B \cos \theta$ where θ is the angle between the two vectors as shown in Fig. (a).
- Since *A*, *B* and $\cos \theta$ are scalars, the dot product of **A** and **B** is a scalar quantity. Each vector, **A** and **B**, has a direction but their scalar product does not have a direction.
- \blacktriangleright we have **A.B** = A (B cos θ) = B (A cos θ)
- > Geometrically, $B \cos \theta$ is the projection of **B** onto **A** in Fig. (b)
- > and $A \cos \theta$ is the projection of **A** onto **B** in Fig. (c).
- > So, **A.B** is the product of the magnitude of **A** and the component of **B** along **A**.
- > Alternatively, it is the product of the magnitude of **B** and the component of **A** along **B**

Properties of scalar product:

The scalar product follows the commutative law : A.B = B.A

Scalar product obeys the distributive law: A. (B + C) = A.B + A.C

- > Further, **A.** $(\lambda \mathbf{B}) = \lambda (\mathbf{A}.\mathbf{B})$ where λ is a real number.
- For unit vectors I, j,and k we have

```
For unit vectors \mathbf{i}, \mathbf{j}, \mathbf{k} we have

\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1

\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0

Given two vectors
```

Vector Product Of Two Vectors:

- > A vector product of two vectors **a** and **b** is a vector **c** such that
- > (i) magnitude of $\mathbf{c} = c = ab \sin\theta$ where a and b are magnitudes of **a** and **b** and θ is the angle between the two vectors.
- > (ii) **c** is perpendicular to the plane containing **a** and **b**.
- (iii) if we take a right handed screw with its head lying in the plane of **a** and **b** and the screw perpendicular to this plane, and if we turn the head in the direction from **a** to **b**, then the tip of the screw advances in the direction of **c**.
- > This right handed screw rule is illustrated in Fig. a.

- Alternately, if one curls up the fingers of right hand around a line perpendicular to the plane of the vectors **a** and **b** and if the fingers are curled up in the direction from **a** to **b**, then the stretched thumb points in the direction of **c**, as shown in Fig. b.
- > A simpler version of the right hand rule is the following :
- Open up your right hand palm and curl the fingers pointing from a to b. Your stretched thumb points in the direction of c.
- It should be remembered that there are two angles between any two vectors **a** and **b**. In Fig (a) or (b)
- > they correspond to θ (as shown) and (360⁰ θ).
- > While applying either of the above rules, the rotation should be taken through the smaller angle ($<180^{\circ}$) between **a** and **b**.
- Because of the cross used to denote the vector product, it is also referred to as cross product.

Properties Of Vector Product:

- > The vector product is **not commutative**, i.e. $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$
- > The magnitude of both $\mathbf{a} \times \mathbf{b}$ and $\mathbf{b} \times \mathbf{a}$ is the same ($ab \sin\theta$);
- > also, both of them are perpendicular to the plane of **a** and **b**.
- > But the rotation of the right-handed screw in case of **a** × **b** is from **a** to **b**, whereas in
- \succ case of **b** × **a** it is from **b** to **a**.
- > This means the two vectors are in **opposite** directions.
- \blacktriangleright We have $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- Both scalar and vector products are **distributive** with respect to vector addition.
- Thus, a.(b + c) = a.b + a.c a × (b + c) = a × b + a × c
- > We may write $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ in the component form.
- > For this we first need to obtain some elementary cross products:
- \rightarrow **a** × **a** = **0** (**0** is a null vector, i.e. a vector with zero magnitude)
- > This follows since magnitude of $\mathbf{a} \times \mathbf{a}$ is $a^2 \sin 0^\circ = 0$.
- > From this follow the results $\hat{i} \times \hat{i} = 0$, $\hat{j} \times \hat{j} = 0$, $\hat{k}^2 \times \hat{k}^2 = 0$

- \rightarrow **i** × **j** = **k** Note that the magnitude of **i** × **j** is sin90⁰ or 1,
- > Since \hat{i} and \hat{j} both have unit magnitude and the angle between them is 90⁰.
- > Thus, $\mathbf{\hat{i}} \times \mathbf{\hat{j}}$ is a unit vector.
- A unit vector perpendicular to the plane of **`i** and **`j** and related to them by the right hand screw rule is **`k**
- \succ . Similarly $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
- > From the rule for commutation of the cross product, it follows:
- ▷ $\hat{j} \times \hat{i} = -k^{\hat{i}}, k^{\hat{i}} \times \hat{j} = -\hat{i}, \hat{i} \times k^{\hat{i}} = -\hat{j}$
- if **`i**, **j**,**k**[^] occur cyclically in the above vector product relation, the vector product is positive.

if **`i**, **`j**,**k**` do not occur in cyclic order, the vector product is negative.

$$\mathbf{a} \times \mathbf{b} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times (b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k})$$
$$= a_x b_y \mathbf{k} - a_x b_z \mathbf{j} - a_y b_x \mathbf{k} + a_y b_z \mathbf{i} + a_z b_x \mathbf{j} - a_z b_y \mathbf{i}$$
$$= (a_y b_z - a_z b_x) \mathbf{i} + (a_z b_x - a_x b_z) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

The expression for a × b can be put in a determinant form which is easy to remember.

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

For example: ,

- moment of a force is a vector product of lever arm and force. T = T × F
- angular momentum is a vector product of position vector and momentum. 1 = r × p

THANK YOU

BIBLIOGRAPHY •NCERT TEXT BOOK- CLASS XII-PHYSICS H.P.Sharma PGT(SS) AECS, Narora.