
Std XI : Computer Science

Tuple

Module 30 (1/4)

Basic operations

(Creation and Slicing)

E - Module by AEES, Mumbai 1

Definition

A tuple in a Python is a collection of elements, also known as

objects. Like a list, it is an ordered sequence of different data

types such as integers, floats, strings etc. But the main

differences between tuples and lists are –

The lists are mutable, whereas the tuples are

immutable.

The lists use square brackets, while the tuples use

parentheses.

Creating a tuple

We can create a tuple by putting different comma-separated

values. Optionally we can also put these comma-separated

values between parentheses. For example −

tup1 is a tuple of integers

tup1 = (4,9,16,25,36)

tup2 is a is a tuple of strings

tup2 = (‘CS’, ‘Maths', ‘Phy', 'Chem', ’Eng’)

tup3 is a tuple of mixed data types

tup3 = (‘AECS’, ‘Kudankulam’, “Tamil Nadu”, 627120)

tup4 is a tuple with a list as an element

tup4 = (50, 60, 70, [80,90])

tup5 is a tuple with a tuple as an element

Tup5 = (10, 20, 30, 40, 50, (60,70))

#tup6 is a default type of tuple

tup6 = 10, 20, 30, 40 # no parentheses

When we don’t use [] or (), the elements are taken by

default as a tuple.

The empty tuple is written with parentheses without any

value.

tup1 = ()

To create a tuple with a single element, we have to include a

comma, even though there is only one value in the tuple.

tup1 = (50,)

We can also create a tuple from the list as illustrated below.

#Python code

List = [1,2,3,4,5] # create a list

tup1 = tuple(List) # convert a list into tuple

print(tup1) # display tuple

The output of this code will be 1,2, 3, 4, 5

The range function can also be used to create a tuple as

depicted below.

#Python code

tup1 = tuple(range(1,10,2))

print(tup1)

The output of this code will be 1, 3, 5, 7, 9

Updating Tuples
As the Tuples are immutable, we cannot update or change

the values of tuple elements. However, we are able to

extract part of existing tuples in order to create new tuples as

illustrated below.

tup1 = (4, 16, 36);

tup2 = ('Cat', 'Rat', “Mat”, “Bat”);

Following action is not valid for tuples

tup1[0] = 2;

However, an element of type list of a tuple is mutable.

#Python code

tup1 = (2, 3, 5, 7, [11, 13])

tup1[4][1]=17

print(tup1)

The output will be (2, 3, 5, 7, [11, 17])

However, an element of type list of a tuple is mutable.

#Python code

tup1 = (2, 3, 5, 7, [11, 13])

tup1[4][1]=17

print(tup1)

The output will be (2, 3, 5, 7, [11, 17])

Further,, we can create a new tuple as shown below.

#Python code

tup1 = (4, 16, 36);

tup2 = ('Cat', 'Rat', “Mat”, “Bat”);

tup3 = tup1 + tup2;

print (tup3)

When the above code is executed, it produces the following output.

(4, 16, 36, Cat, Rat, Mat, Bat)

Further,, we can create a new tuple as shown below.
#Python code
tup1 = (4, 16, 36);
tup2 = ('Cat', 'Rat', “Mat”, “Bat”);
tup3 = tup1 + tup2;
print (tup3)

When the above code is executed, it produces the following
output.
(4, 16, 36, Cat, Rat, Mat, Bat)

Delete Tuple Elements

From a tuple, it is not possible to remove an individual tuple

element. However, the entire tuple can be removed or

deleted by using the in-built method del as shown in the

following code.

#Python code

tup1= (‘Maths’, 'Physics', 'Chemistry', 2019, 2020)

print (tup1)

del tup1

print("After deleting tup1 : ")

print (tup1)

The execution of this code displays the output as shown

below.

(Maths, Physics, Chemistry, 2019, 2020)

After deleting tup :

Traceback (most recent call last):

File "test.py", line 9, in <module>

print (tup1)

NameError: name 'tup'1 is not defined

Note an exception raised, this is because after del

tup1, tuple does not exist any more.

Basic Tuples Operations

Concatenation

The Python permits us to combine / concatenate two or

more tuples by using concatenation operator ‘+’. Further, a

new tuple can also created which consists of the resultant

value of this concatenation operation.

#Python Code

tup1 = (10, 20, 30, 40)

tup2 = (50, 60, 70)

print(tup1+tup2)

The output will be (10, 20, 30, 40,50, 60, 70)

#Python Code

tup1 = (‘A’,’E’,’I’)

tup2 = (‘O’,’U’)

tup3 = tup1+tup2

print(tup3)

The output will be (A, E, I, O, U)

The concatenation operator can also be used for extending a tuple

with 1 or more elements as shown below.

#Python Code

tup1 = (10, 20, 30, 40)

tup2 = tup1 + (50,)

print(tup2)

The output will be (10, 20, 30, 40, 50)

#Python Code

tup1 = (2,3,5,7,11)

tup2 = tup1 + (13, 17, 19)

print(tup2)

The output will be (2,3,5,7,11, 13, 17, 19)

Repetition

This operation is carried out with the symbol ‘*’, which is

used to repeat the tuple elements. This operator needs the

first operand to be a tuple and second operand to be an

integer, which specifies number of times, the tuple is to be

repeated.

#Python Code

tup1 = (10, 20, 30)

print(tup1*2)

The output will be (10, 20, 30, 10, 20, 30)

#Python Code

tup1 = (‘TANQ’)

print(tup1*4)

The output will be (‘TANQ’, ‘TANQ’, ‘TANQ’, ‘TANQ’)

Membership

It uses operator ‘in’ to check whether the given element is present

in the tuple or not and returns True if the element is present,

otherwise returns False. The operator ‘not in’ returns True, if the

element is not present in the tuple, otherwise returns False.

#Python code

tup1 = (“Chennai”, “Tiruchi”, “Madurai”)

chk1 = “Tiruchi” in tup1

chk2= “Chennai” not in tup1

print(chk1)

print(chk2)

The output will be

True

False

Indexing/ Slicing a tuple

Like the elements of a string or a list, the values of a tuple can be

accessed by using slicing or indexing, which can be carried out by

using positive or negative values. Let’s consider a Python code as

given below.

#Python code

tup1 = (‘Maths’, 'Physics', 'Chemistry', 2019, 2020)

tup2 = (1, 2, 3, 4, 5, 6, 7, 8)

print("tup1[0] = ", tup1[0]) # first element

print ("tup2[2:7] = ", tup2[2:7]) #index 2 to 6

print (" tup2[0:len(tup2)] = “,tup2[0:len(tup2)]]) #all the elements

print ("tup2[:5] = ", tup2[:5]) # from index 0

print ("tup2[2:] = ", tup2[2:]) # till the last element

print ("tup1[-4:-1] = ", tup1[-4:-1]) #negative indexing
print(“tup2[::2] =”,tup2[::2]) #even position elements
print(“tup2[::-1] =”,tup2[::-1]) #elements in the reverse order
When the above code is executed, it produces the following
output.
tup1[0] = Maths
tup2[2:7] = (3, 4, 5, 6, 7)
tup2[0:len(tup2)] = (1, 2, 3, 4, 5, 6, 7, 8)
tup2[:5] = (1, 2, 3, 4, 5)
tup2[2:] = (3, 4, 5, 6, 7, 8)
tup1[-4:-1] = ('Physics', 'Chemistry', 2019)
tup2[::2] = (1, 3, 5, 7)
tup2[::-1] = (8, 7, 6, 5, 4, 3, 2, 1)

Like a list, the elements of a tuple can be accessed by using for as
shown below.
#Python code
tup = (20, 40, 60, 80)

for I in tup:
print(I, end = ‘ ‘)

The execution of this code will display the output as
20 40 60 80

Tuple Assignment
It is one of the features of Python which permits us to assign elements of a

tuple with the variables of a tuple. The number of elements to be assigned
should be equivalent to numbers of variables which assign the values.
#Python code
#Tuple assignment
(n1,n2,n3) = (10, 20, 30)
print(n1,’,’,n2,’,’,n3)
SchRec = (35, 'Himanshi', 'AECS Kudankulam', 627120)
(Rno,Name,SchAddr, Pin) = SchRec
print(Rno, ‘, ’, Name,’, ’, SchAddr, ‘, ’, Pin)
OUTPUT
10 20 30
35, Himanshi, AECS Kudankulam, 627120

Further, the expressions can be evaluated and assigned with a
tuple as illustrated in the following code.
#Python code
#Evaluate expressions
#Assign with tuple
Ar = (15+5, 15*5, 15/5, 15-5)
(add, mul, div, sub) = Ar
print('Sum= ',add, ', Product= ', mul, ' Division= ', div, ' Diff.= ',
sub)

OUTPUT
Sum= 20, Product= 75, Division= 3.0, Diff.= 10

Have a nice day !!!

