Module – 1/4

SQUARES AND SQUARE ROOTS

You can download the chapter of NCERT textbook $\rightarrow \underline{\text{http://ncert.nic.in/textbook/textbook.htm?hemh1=6-16}$

We know that

The area of a rectangle = length × breadth $(l \times b)$

And the area of a square = side \times side

Based on figure (ii) [BLUE] and figure (iii) [RED], we can find the area of a square with given side.

Side of square (in cm)	Area of square (in cm ²)	Side of square (in cm)	Area of square (in cm ²)
1	$1 \times 1 = 1 = 1^2$	6	$6\times 6=36=6^2$
2	$2 \times 2 = 4 = 2^2$	7	$7 \times 7 = 49 = 7^2$
3	$3 \times 3 = 9 = 3^2$	8	$8 \times 8 = 64 = 8^2$
4	$4 \times 4 = 16 = 4^2$	x	$x \times x = x^2$
5	$5 \times 5 = 25 = 5^2$	а	$a \times a = a^2$

The table for the area of a square with given side

Such numbers like 1, 4, 9, 16, 25, 36, 49, ... are known as square numbers.

In general, if a natural number <u>*m* can be expressed as n^2 </u>, where n is also a natural number, then m is a square number or perfect square.

Example $\rightarrow 25 = 5^2$, here <u>25 can be expressed as 5²</u>, so 25 is a square number.

Look here $\rightarrow 1 = 1^2$, $4 = 2^2$, $9 = 3^2$, $16 = 4^2$, $36 = 6^2$, $49 = 7^2$ $64 = 8^2$ $81 = 9^2$ $100 = 10^2$, In these, 1, 4, 9, 16, 36, 49, are square numbers.

Properties of Square Numbers

By looking the squares of numbers, easily we can find the properties of square numbers

Number	Square	Number	Square	Number	Square
1	1	11	121	21	44 1
2	4	12	14 4	22	484
3	9	13	169	23	52 9
4	1 6	14	19 6	24	57 6
5	25	15	225	25	625
6	36	16	256	26	67 <mark>6</mark>
7	4 9	17	289	27	72 9
8	64	18	324	28	78 4
9	81	19	361	29	841
10	100	20	40 0	30	90 0

All the square numbers end with 0, 1, 4, 5, 6 or 9 at units place. None of these end with 2, 3, 7 or 8 at unit's place.

Property $-1 \rightarrow$ All the square number end with 0, 1, 4, 5, 6 or 9 at unit place.

Study the same table again by separating some numbers

Number	Square	Number	Square	Number	Square	Unit place in squares
1	-	11	101	01	4 4 4	
1	1	11	121	21	441	1
9	81	19	361	29	84 1	
2	4	12	144	22	484	4
8	64	18	32 4	28	78 4	
	-					
3	9	13	169	23	529	0
7	4 9	17	289	27	72 9	9
			10.5			
4	16	14	196	24	576	6
6	36	16	256	26	67 <mark>6</mark>	U
5	25	15	225	25	625	5
10	100	20	400	20	000	0
10	100	20	400	30	900	U

Property $-2 \rightarrow$ The one's place of square depends on the one's place of the numbers.

The one's place of square is 1 for the numbers ends with 1 & 9. The one's place of square is 4 for the numbers ends with 2 & 8. The one's place of square is 9 for the numbers ends with 3 & 7. The one's place of square is 6 for the numbers ends with 4 & 6. The one's place of square is 5 for the numbers ends with 5. The one's place of square is 0 for the numbers ends with 0.

Property $-3 \rightarrow$ If a number contains some zeros at the end, its square have double zeros.

Table for the square of a number having zero or zeros at the end

Number	Square
10 (1 zero)	100 (2 zeros)
200 (2 zeros)	40,000 (4 zeros)
5,000 (3 zeros)	2,50,00,000 (6 zeros)
70,000 (4 zeros)	490000000 (<mark>8 zeros</mark>)
80,00,000 (6 zeros)	6,40,00,00,00,00,000 (12 zeros)

$\begin{array}{l} Property-4 \rightarrow Total \ natural \ numbers \ between \ two \ consecutive \ squares \\ is \ double \ of \ the \ smaller \ number \end{array}$

Natural numbers are $\rightarrow \underline{1}$, 2, 3, $\underline{4}$, 5, 6, 7, 8, $\underline{9}$, 10, 11, 12, 13, 14, 15, $\underline{16}$, 17, 18, 19, 20, 21, 22, 23, 24, $\underline{25}$, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, $\underline{36}$, 37, 38,

Between $\underline{1}^2$ and 2^2 there are two ($\underline{1} \times 2 = 2$) non square numbers 2, 3.

Between $\underline{2}^2$ and 3^2 there are four ($\underline{2} \times 2 = 4$) non square numbers 5, 6, 7, 8.

Between $\underline{3}^2$ and 4^2 there are six ($\underline{3} \times 2 = 6$) non square numbers 10, 11, 12, 13, 14, 15.

Between $\underline{4}^2$ and 5^2 there are eight ($\underline{4} \times 2 = 8$) non square numbers.

Between $\underline{5}^2$ and 6^2 there are ten ($\underline{5} \times 2 = 10$) non square numbers.

Between $\underline{9}^2$ and 10^2 there are eighteen ($\underline{9} \times 2 = 18$) non square numbers.

Between $\underline{15}^2$ and 16^2 there are thirty ($\underline{15} \times 2 = 30$) non square numbers.

Between $\underline{x^2}$ and $(x + 1)^2$ there are $2x (\underline{x} \times 2 = 2x)$ non square numbers.

Property $-5 \rightarrow$ Total natural numbers between two consecutive squares is one less than the difference of the squares.

Natural numbers are $\rightarrow \underline{1}$, 2, 3, $\underline{4}$, 5, 6, 7, 8, $\underline{9}$, 10, 11, 12, 13, 14, 15, $\underline{16}$, 17, 18, 19, 20, 21, 22, 23, 24, $\underline{25}$, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, $\underline{36}$, 37, 38,

Between $\underline{1}$ and $\underline{4}$ there are two $\{(\underline{4} - \underline{1}) - 1\}$ non square numbers.

Between $\underline{4}$ and $\underline{9}$ there are four $\{(\underline{9} - \underline{4}) - 1\}$ non square numbers.

Between $\underline{9}$ and $\underline{16}$ there are six $\{(\underline{16} - \underline{9}) - 1\}$ non square numbers.

Between <u>16</u> and <u>25</u> there are eight $\{(\underline{25} - \underline{16}) - 1\}$ non square numbers.

Between <u>81</u> and <u>64</u> there are sixteen $\{(\underline{81} - \underline{64}) - 1\}$ non square numbers.

Property – 6 → If the result is zero on successive subtraction of odd natural numbers starting from 1 (1, 3, 5, 7,) from a number, then the number is a perfect square.

Example – 1. Consider the number 25. Now Successively subtract 1, 3, 5, 7, 9, ... from it. 25 - 1 = 24, 24 - 3 = 21, 21 - 5 = 16, 16 - 7 = 9, 9 - 9 = 0 (zero) So, 25 is a perfect square. **Example** – 2. Consider the number **38**. Now Successively subtract **1**, **3**, **5**, **7**, **9**, ... from it. 38 - 1 = 37, 37 - 3 = 34, 34 - 5 = 29, 29 - 7 = 22, 22 - 9 = 13, 13 - 11 = 2, $2 - 13 = -11 \neq \underline{0}$ So, 38 is not a perfect square.

Property $-7 \rightarrow$ The sum of first n odd natural numbers is n².

Odd numbers are $\rightarrow 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, \dots$

Sum of first <u>1</u> odd number = $1 = \underline{1}^2$ Sum of first <u>2</u> odd numbers = $1 + 3 = 4 = \underline{2}^2$ Sum of first <u>3</u> odd numbers = $1 + 3 + 5 = 9 = \underline{3}^2$ Sum of first <u>4</u> odd numbers = $1 + 3 + 5 + 7 = 16 = \underline{4}^2$ Sum of first <u>5</u> odd numbers = $1 + 3 + 5 + 7 + 9 = 25 = \underline{5}^2$ Sum of first <u>9</u> odd numbers = $1 + 3 + 5 + 7 + 9 + \dots = ? = \underline{9}^2$ Sum of first <u>18</u> odd numbers = $1 + 3 + 5 + 7 + 9 + \dots = ? = \underline{18}^2$ Sum of first <u>n</u> odd numbers = $1 + 3 + 5 + 7 + 9 + \dots = ? = \underline{18}^2$

Property $-8 \rightarrow$ We can express the square of any odd number as the sum of two consecutive positive integers.

$$1^{2} = 1 = 0 + 1$$

$$3^{2} = 9 = 4 + 5$$

$$5^{2} = 25 = 12 + 13$$

$$7^{2} = 49 = 24 + 25$$

$$9^{2} = 81 = 40 + 41$$

$$13^{2} = 169 = 84 + 85$$

$$21^{2} = 441 = 220 + 221$$

Many properties can be understand with the patterns also

> Product of two consecutive even or odd natural numbers

$$3 \times 5 = (4 - 1) \times (4 + 1) = 4^{2} - 1$$

$$4 \times 6 = (5 - 1) \times (5 + 1) = 5^{2} - 1$$

$$7 \times 9 = (8 - 1) \times (8 + 1) = 8^{2} - 1$$

$$11 \times 13 = (12 - 1) \times (12 + 1) = 12^{2} - 1$$

$$24 \times 26 = (25 - 1) \times (25 + 1) = 25^{2} - 1$$

> Some more patterns in square numbers

$$1^{2} = 1$$

$$11^{2} = 1 \ 2 \ 1$$

$$111^{2} = 1 \ 2 \ 3 \ 2 \ 1$$

$$1111^{2} = 1 \ 2 \ 3 \ 4 \ 3 \ 2 \ 1$$

$$11111^{2} = 1 \ 2 \ 3 \ 4 \ 5 \ 4 \ 3 \ 2 \ 1$$

$$1111111^{2} = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$$

> Another interesting pattern

$$7^{2} = 49$$

 $67^{2} = 4489$
 $667^{2} = 444889$
 $6667^{2} = 44448889$
 $66667^{2} = 4444488889$
 $666667^{2} = 4444488889$

You also try to find some more properties and patterns on square of numbers and discuss with your teachers.
