SQUARES AND SQUARE ROOTS

You can download the chapter of NCERT textbook $\rightarrow \underline{\text { http://ncert.nic.in/textbook/textbook.htm?hemh1=6-16 }}$
We know that

The area of a rectangle $=\quad$ length \times breadth $(l \times b)$
And the area of a square $=$ side \times side

Now try to find the area of the following figures

Figure (i)

Figure (ii)

Figure (iii)
In Figure (i) [GREEN]
It is a rectangle.
Here length $(l)=10 \mathrm{~cm}$
and breadth $(b)=5 \mathrm{~cm}$
Area of rectangle $=l \times b$
$=10 \mathrm{~cm} \times 5 \mathrm{~cm}$
$=50 \mathrm{~cm}^{2}$

In Figure (ii) [BLUE]
It is a square.
Here length $(l)=5 \mathrm{~cm}$
and breadth $(b)=5 \mathrm{~cm}$
$\quad l=b=$ side (s)
Area of square $=$ side \times side
$=5 \mathrm{~cm} \times 5 \mathrm{~cm}=25 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \text { In Figure (iii) [RED] } \\
& \text { It is also a square. } \\
& \text { Here length }(l)=4 \mathrm{~cm} \\
& \text { and breadth }(b)=4 \mathrm{~cm} \\
& \quad l=b=\text { side }(s) \\
& \text { Area of square }=\text { side } \times \text { side } \\
& =4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2}
\end{aligned}
$$

Based on figure (ii) [BLUE] and figure (iii) [RED], we can find the area of a square with given side.

The table for the area of a square with given side

Side of square (in cm)	Area of square (in cm^{2})	Side of square (in cm)	Area of square (in cm ${ }^{2}$)
1	$1 \times 1=1=1^{2}$	6	$6 \times 6=36=6^{2}$
2	$2 \times 2=4=2^{2}$	7	$7 \times 7=49=7^{2}$
3	$3 \times 3=9=3^{2}$	8	$8 \times 8=64=8^{2}$
4	$4 \times 4=16=4^{2}$	x	$x \times x=x^{2}$
5	$5 \times 5=25=5^{2}$	a	$a \times a=a^{2}$

Such numbers like $1,4,9,16,25,36,49, \ldots$ are known as square numbers.

In general, if a natural number m can be expressed as n^{2}, where n is also a natural number, then m is a square number or perfect square.

Example $\rightarrow 25=5^{2}$, here 25 can be expressed as 5^{2}, so 25 is a square number.

$$
\begin{array}{rlll}
\text { Look here } \rightarrow \boldsymbol{1}=1^{2}, \\
49=7^{2}
\end{array} \quad \mathbf{4}=2^{2}, \quad \mathbf{9}=8^{2}, \quad \mathbf{8 1}=9^{2} \quad 1 \mathbf{1 0 0}=4^{2}, \quad \mathbf{3 6}=6^{2}, \ldots \ldots \ldots .
$$

In these, $\mathbf{1 , 4 , 9 , 1 6 , 3 6}, 49, \ldots \ldots$. are square numbers.

Properties of Square Numbers

By looking the squares of numbers, easily we can find the properties of square numbers

Number	Square	Number	Square	Number	Square
1	$\mathbf{1}$	11	121	21	441
2	4	12	144	22	484
3	$\mathbf{9}$	13	169	23	529
4	16	14	196	24	576
5	25	15	225	25	625
6	36	16	256	26	676
7	49	17	289	27	729
8	64	18	324	28	784
9	81	19	361	29	841
10	100	20	400	30	900

All the square numbers end with $\mathbf{0 , 1 , 4 , 5 , 6} \mathbf{~ o r ~} 9$ at units place. None of these end with $2,3,7$ or 8 at unit's place.

Property $-1 \rightarrow$ All the square number end with $0,1,4,5,6$ or 9 at unit place.

Study the same table again by separating some numbers

Number	Square	Number	Square	Number	Square	Unit place in squares
1	1	11	121	21	441	1
9	81	19	361	29	841	
2	4	12	144	22	484	4
8	64	18	324	28	784	
3	9	13	169	23	529	9
7	49	17	289	27	729	
4	16	14	196	24	576	6
6	36	16	256	26	676	
5	25	15	225	25	625	5
10	100	20	400	30	900	0

Property - $2 \rightarrow$ The one's place of square depends on the one's place of the numbers.

The one's place of square is $\mathbf{1}$ for the numbers ends with $\mathbf{1 \&} 9$.
The one's place of square is $\mathbf{4}$ for the numbers ends with $\mathbf{2 \& 8} \mathbf{8}$.
The one's place of square is 9 for the numbers ends with $\mathbf{3 \& 7} 7$.
The one's place of square is $\mathbf{6}$ for the numbers ends with $\mathbf{4 \&} \mathbf{6}$.
The one's place of square is $\mathbf{5}$ for the numbers ends with 5 .
The one's place of square is $\mathbf{0}$ for the numbers ends with $\mathbf{0}$.

Property - $3 \rightarrow$ If a number contains some zeros at the end, its square have double zeros.

Table for the square of a number having zero or zeros at the end

Number	Square
10 (1 zero)	$100(2$ zeros $)$
$200(2$ zeros $)$	$40,000(4$ zeros $)$
$5,000(3$ zeros)	$2,50,00,000(6$ zeros $)$
$70,000(4$ zeros)	$4900000000(8$ zeros $)$
$80,00,000$ (6 zeros)	$6,40,00,00,00,00,000$ (12 zeros)

Property - $\mathbf{4} \rightarrow$ Total natural numbers between two consecutive squares is double of the smaller number

Natural numbers are $\rightarrow \underline{\mathbf{1}}, 2,3, \underline{\mathbf{4}}, 5,6,7,8, \underline{\mathbf{9}}, 10,11,12,13,14,15, \underline{\mathbf{1}}, 17,18,19,20$, $21,22,23,24, \underline{\mathbf{2 5}}, 26,27,28,29,30,31,32,33,34,35, \underline{\mathbf{3 6}}, 37,38, \ldots \ldots \ldots$

Between $\underline{\mathbf{1}}^{2}$ and 2^{2} there are two $(\underline{\mathbf{1}} \times 2=2)$ non square numbers 2,3 .
Between $\underline{\mathbf{2}}^{2}$ and 3^{2} there are four $(\underline{\mathbf{2}} \times 2=4)$ non square numbers $5,6,7,8$.
Between $\underline{\mathbf{3}}^{2}$ and 4^{2} there are six $(\underline{\mathbf{3}} \times 2=6)$ non square numbers $10,11,12,13,14,15$.
Between $\underline{4}^{2}$ and 5^{2} there are eight $(\underline{4} \times 2=8)$ non square numbers.
Between $\underline{\mathbf{5}}^{2}$ and 6^{2} there are ten $(\underline{\mathbf{5}} \times 2=10)$ non square numbers.
Between $\underline{\mathbf{9}}^{2}$ and 10^{2} there are eighteen $(\underline{\mathbf{9}} \times 2=18)$ non square numbers.
Between $\underline{5}^{2}$ and 16^{2} there are thirty $(\underline{\mathbf{5}} \times 2=30)$ non square numbers.
Between \underline{x}^{2} and $(x+1)^{2}$ there are $2 x(\underline{x} \times 2=2 x)$ non square numbers.

Property -5 Total natural numbers between two consecutive squares is one less than the difference of the squares.

Natural numbers are $\rightarrow \underline{\mathbf{1}}, 2,3, \underline{\mathbf{4}}, 5,6,7,8, \underline{\mathbf{9}}, 10,11,12,13,14,15, \underline{\mathbf{1}}, 17,18,19,20$, $21,22,23,24, \underline{\mathbf{2 5}}, 26,27,28,29,30,31,32,33,34,35, \underline{\mathbf{3 6}}, 37,38$, \qquad

Between $\underline{1}$ and $\underline{\mathbf{4}}$ there are two $\{(\underline{\mathbf{4}}-\underline{\mathbf{1}})-1\}$ non square numbers.
Between $\underline{4}$ and $\underline{\mathbf{9}}$ there are four $\{(\underline{\mathbf{9}-\mathbf{4}})-1\}$ non square numbers.
Between $\underline{9}$ and $\underline{16}$ there are six $\{\underline{\mathbf{1 6}}-\underline{9})-1\}$ non square numbers.
Between $\underline{16}$ and $\underline{\mathbf{5}}$ there are eight $\{(\underline{\mathbf{2 5}} \mathbf{- 1 6})-1\}$ non square numbers.

Property - 6 \rightarrow If the result is zero on successive subtraction of odd natural numbers starting from $1(1,3,5,7, \ldots .$.$) from a$ number, then the number is a perfect square.

Example - 1.

Consider the number 25.
Now Successively subtract 1,
3, 5, 7, 9, ... from it.
$25-\mathbf{1}=24$,
$24-3=21$,
$21-5=16$,
$16-7=9$,
$9-9=\underline{\mathbf{0}} \underline{\text { (zero) }}$
So, 25 is a perfect square.

$$
\text { Example - } 2 .
$$

Consider the number 38.
Now Successively subtract 1,3, $\mathbf{5 , 7 , 9}, \ldots$ from it.

$$
\begin{aligned}
& 38-1=37, \\
& 37-3=34, \\
& 34-5=29, \\
& 29-7=22, \\
& 22-9=13, \\
& 13-11=2, \\
& 2-13=-11 \neq \underline{\mathbf{0}}
\end{aligned}
$$

So, 38 is not a perfect square.

Property - $7 \rightarrow$ The sum of first \mathbf{n} odd natural numbers is $\mathbf{n}^{\mathbf{2}}$.

Odd numbers are $\rightarrow 1,3,5,7,9,11,13,15,17,19,21,23,25,27, \ldots \ldots \ldots$.

Sum of first $\underline{\mathbf{1}}$ odd number $=1=\underline{\mathbf{1}}^{2}$
Sum of first $\underline{\mathbf{2}}$ odd numbers $=1+3=4=\underline{\mathbf{2}}^{2}$
Sum of first $\underline{\mathbf{3}}$ odd numbers $=1+3+5=9=\underline{\mathbf{3}}^{2}$
Sum of first $\underline{4}$ odd numbers $=1+3+5+7=16=\underline{4}^{2}$
Sum of first $\underline{\mathbf{5}}$ odd numbers $=1+3+5+7+9=25=\underline{\mathbf{5}}^{2}$
Sum of first $\underline{\mathbf{9}}$ odd numbers $=1+3+5+7+9+\ldots=?=\underline{\mathbf{9}}^{2}$

Sum of first $\underline{\mathbf{1 8}}$ odd numbers $=1+3+5+7+9+\ldots=?=\underline{\mathbf{1 8}}^{2}$
Sum of first $\underline{\mathbf{n}}$ odd numbers $=1+3+5+7+9+\ldots \mathrm{n}$ terms $=\underline{\mathbf{n}}^{2}$

Property - 8 We can express the square of any odd number as the sum of two consecutive positive integers.

$$
\begin{aligned}
& 1^{2}=1=0+1 \\
& 3^{2}=9=4+5 \\
& 5^{2}=25=12+13 \\
& 7^{2}=49=24+25 \\
& 9^{2}=81=40+41 \\
& 13^{2}=169=84+85 \\
& 21^{2}=441=220+221
\end{aligned}
$$

Many properties can be understand with the patterns also

$>$ Product of two consecutive even or odd natural numbers

$$
\begin{aligned}
& 3 \times 5=(4-1) \times(4+1)=4^{2}-1 \\
& 4 \times 6=(5-1) \times(5+1)=5^{2}-1 \\
& 7 \times 9=(8-1) \times(8+1)=8^{2}-1 \\
& 11 \times 13=(12-1) \times(12+1)=12^{2}-1 \\
& 24 \times 26=(25-1) \times(25+1)=25^{2}-1
\end{aligned}
$$

$>$ Some more patterns in square numbers

$$
\begin{aligned}
& 1^{2}=1 \\
& 11^{2}=121 \\
& 111^{2}=12321 \\
& 1111^{2}=1234321 \\
& 11111^{2}=123454321 \\
& 11111111^{2}=123456787654321
\end{aligned}
$$

$>$ Another interesting pattern

$$
\begin{aligned}
& 7^{2}=49 \\
& 67^{2}=4489 \\
& 667^{2}=444889 \\
& 6667^{2}=44448889 \\
& 66667^{2}=4444488889 \\
& 666667^{2}=444444888889
\end{aligned}
$$

You also try to find some more properties and patterns on square of numbers and discuss with your teachers.

