SQUARES AND SQUARE ROOTS

You can download the chapter of NCERT textbook \rightarrow http://ncert.nic.in/textbook/textbook.htm?hemh1=6-16

Finding the Square of a Number

Squares of small numbers like $1,2,3,4,5,6,7, \ldots$ etc. are easy to find.

$$
\begin{aligned}
& 1^{2}=1 \times 1=1 \\
& 2^{2}=2 \times 2=4 \\
& 3^{2}=3 \times 3=9 \\
& 4^{2}=4 \times 4=16 \\
& 8^{2}=8 \times 8=64
\end{aligned}
$$

Now try for the numbers $12,37 \& 45$

$$
\begin{aligned}
& 12^{2}=12 \times 12=? \\
& 37^{2}=27 \times 27=? \\
& 45^{2}=45 \times 45=? \quad \text { Not easy ? }
\end{aligned}
$$

Now we will find the square of two digit numbers so quickly.
For example, try to find the square of 12

So $12^{2}=144$

Now again try with another example
$37^{2}=$

So $37^{2}=1369$
> Start thinking from the last digit
Let's try one more example
$56^{2}=?$

Here digits are 5 and 6

Last digit is 6

Step-1 (square of last digit)

		$6^{2}=36$

Step - 2 (double of product of both the digits)

	$2 * 5 * 6=60(+3) \rightarrow(63)$	6

Step-3 (square of first digit)

$5^{2}=25(+6) \rightarrow(31)$	3	6

Step - 4 (combining all)

So $\mathbf{5 6}^{\mathbf{2}}=\mathbf{3 1 3 6}$

Finding the Square of a Number ending 5

Consider a number with unit digit 5, i.e., a5

$$
\begin{aligned}
& (a 5)^{2} \\
= & (10 a+5)^{2} \\
= & (10 a+5)(10 a+5) \\
= & 10 a(10 a+5)+5(10 a+5) \\
= & 100 a^{2}+50 a+50 a+25 \\
= & 100 a(a+1)+25 \\
= & a(a+1) \text { hundred }+25
\end{aligned}
$$

So, $(\mathrm{a} 5)^{2}=\mathrm{a}(\mathrm{a}+1)$ hundred +25

Using, $(a 5)^{2}=a(a+1)$ hundred +25
$25^{2}=(2 \times 3)$ hundreds $+25=600+25=625$
$35^{2}=(\mathbf{3} \times 4)$ hundreds $+25=1200+25=1225$
$45^{2}=(4 \times 5)$ hundreds $+25=2000+25=2025$
$75^{2}=(7 \times 8)$ hundreds $+25=5600+25=5625$
$\mathbf{1 2 5}{ }^{2}=(\mathbf{1 2} \times 13)$ hundreds $+25=15600+25=15625$
$\mathbf{3 6 5} 5^{2}=(\mathbf{3 6} \times 37)$ hundreds $+25=133200+25=133225$

Now try some more,

$$
\begin{aligned}
& 15^{2}=(\mathbf{1} \times 2) \text { hundreds }+25= \\
& \mathbf{9 5} 5^{2}=(\square) \text { hundreds }+25 \\
& 1355^{2}=(\square) \text { hundreds }+25
\end{aligned}
$$

\qquad

Pythagorean triplets

The set of three numbers are called Pythagorean triplet if the sum of the squares of smaller numbers is equal to the square of largest number

Consider the following

$$
3^{2}+4^{2}=9+16=25=5^{2}
$$

The collection of numbers 3, 4 and 5 is known as Pythagorean triplet.

6, 8,10 is also a Pythagorean triplet, since

$$
6^{2}+8^{2}=36+64=100=10^{2}
$$

Again, observe that

$$
5^{2}+12^{2}=25+144=169=13^{2} .
$$

The numbers 5, 12, 13 form another such triplet.

General form for Pythagorean triplet

For any natural number $\mathrm{m}>1$
$\left(m^{2}+1\right)^{2}=\left(m^{2}\right)^{2}+2\left(m^{2}\right) \times 1+1^{2}$
$\left(m^{2}-1\right)^{2}=\left(m^{2}\right)^{2}-2\left(m^{2}\right) \times 1+1^{2}$
On subtraction

$$
\begin{aligned}
& \left(\mathrm{m}^{2}+1\right)^{2}-\left(\mathrm{m}^{2}-1\right)^{2}=\left[\left(\mathrm{m}^{2}\right)^{2}-2\left(\mathrm{~m}^{2}\right)^{*} 1+1^{2}\right]-\left[\left(\mathrm{m}^{2}\right)^{2}+2\left(\mathrm{~m}^{2}\right)^{*} 1+1^{2}\right]=(2 \mathrm{~m})^{2} \\
& \Rightarrow\left(\mathrm{~m}^{2}+1\right)^{2}-\left(\mathrm{m}^{2}-1\right)^{2}=(2 \mathrm{~m})^{2} \\
& \Rightarrow\left(\mathrm{~m}^{2}+1\right)^{2}=(2 \mathrm{~m})^{2}+\left(\mathrm{m}^{2}-1\right)^{2}
\end{aligned}
$$

here we have $(2 \mathrm{~m})^{2}+\left(\mathrm{m}^{2}-1\right)^{2}=\left(\mathrm{m}^{2}+1\right)^{2}$.
So, $2 \mathrm{~m}, \mathrm{~m}^{2}-1$ and $\mathrm{m}^{2}+1$ forms a Pythagorean triplet.
General form for Pythagorean triplet is $\mathbf{2 m}, \mathrm{m}^{\mathbf{2}} \mathbf{- 1}$ and $\mathbf{m}^{\mathbf{2}}+\mathbf{1}$

Example : Write a Pythagorean triplet whose smallest member is 8.

Solution: We can get Pythagorean triplets by using general form $2 m, m^{2}-1, m^{2}+1$.
Here $\mathrm{m}^{2}+1$ cannot be smallest number.
Let us first take $\mathrm{m}^{2}-1=8$
So, $\mathrm{m}^{2}=8+1=9$ which gives $\mathrm{m}=3$ Therefore, $2 \mathrm{~m}=6$ and $\mathrm{m}^{2}+1=10$
The triplet is thus $6,8,10$. But 8 is not the smallest member of this.
So, let us try $2 \mathrm{~m}=8$, then $\mathrm{m}=4$ We get $\mathrm{m}^{2}-1=16-1=15$ and $\mathrm{m}^{2}+1=16+1=17$
The triplet is $8,15,17$ with 8 as the smallest member.

Example : Find a Pythagorean triplet in which one member is 12.

Solution: If we take $\mathrm{m}^{2}-1=12$, Then, $\mathrm{m}^{2}=12+1=13$
Then the value of m will not be an integer.
So, we try to take $\mathrm{m}^{2}+1=12$. Again $\mathrm{m}^{2}=11$ will not give an integer value for m .
So, let us take $2 \mathrm{~m}=12$ then $\mathrm{m}=6$
Thus, $\mathrm{m}^{2}-1=36-1=35$ and $\mathrm{m}^{2}+1=36+1=37$
Therefore, the required triplet is $12,35,37$.

All Pythagorean triplets may not be obtained using this form. For example another triplet 5, 12, 13 also has 12 as a member.

If you multiply any Pythagorean triplet with any constant, the resulting set will again the Pythagorean triplet.

Example
$(3,4,5)$ is a Pythagorean triplet
$(3,4,5) \times 2=(6,8,10)$ is also a Pythagorean triplet
$(3,4,5) \times 3=(9,12,15)$ is also a Pythagorean triplet
$(3,4,5) \times 7=(21,28,35)$ is also a Pythagorean triplet

