WORKSHEET ON MODULE 3/5 OF TRIANGLES

SOLVED EXAMPLE

1) In the given figure $A C$ and $B D$ intersect each other at point P and $\frac{A P}{C P}=\frac{B P}{D P}$. Prove that $\triangle \mathrm{ABP} \sim \triangle \mathrm{CDP}$

Solution:

Given: $\frac{A P}{C P}=\frac{B P}{D P}$
To prove: $\triangle \mathrm{ABP} \sim \Delta \mathrm{CDP}$

Proof:

In $\triangle \mathrm{ABP}$ and $\triangle \mathrm{CDP}, \frac{A P}{C P}=\frac{B P}{D P}$ (Given)
$\angle \mathrm{APB}=\angle \mathrm{CPD}$ (Vertically opposite angles)
Therefore, by SAS similarity, $\triangle \mathrm{ABP} \sim \Delta \mathrm{CDP}$
2) The given figure shows $\triangle P Q R$ in which $P T$ and $Q S$ are altitudes drawn on the sides $R Q$ and $P R$ respectively. In $\triangle \mathrm{PQR}$, the relation $\mathrm{SR} \times \mathrm{PQ}=\mathrm{x} \times \mathrm{ST}$ is satisfied.
Which of the following is the value of x
a. RQ
b. RT
c. PT
d. QT

Solution:

In $\triangle \mathrm{PTR}$ and $\triangle \mathrm{QSR}$,
$\angle \mathrm{PTR}=\angle \mathrm{QSR}=90^{\circ}$ and $\angle \mathrm{R}$ is common
Therefore, $\triangle \mathrm{PTR} \sim \Delta \mathrm{QSR}$ (by AA similarity)
$\Longrightarrow \frac{P R}{Q R}=\frac{T R}{S R}$ (Corresponding sides of similar triangles)
Therefore, $\frac{P R}{T R}=\frac{Q R}{S R}$
$\Rightarrow \Delta \mathrm{PQR} \sim \Delta \mathrm{TSR}$ (By SAS similarity with common $\angle \mathrm{R}$)
$\Longrightarrow \frac{P Q}{T S}=\frac{Q R}{S R}$ (Corresponding sides of similar triangles)
$\Rightarrow S R \times P Q=R Q \times S T$
Thus, the value of x is $R Q$

Solve the following:

1) The ratio of the corresponding sides of two triangles $A B C$ and $P Q R$ is $1: 3$. If $\angle \mathrm{P}=55^{\circ}$ and $\angle \mathrm{Q}=30^{\circ}$, what is the measure of $\angle \mathrm{C}$?
2) In the adjoining figure, M is the midpoint of $\overline{J K}, \mathrm{~N}$ is the midpoint of $\overline{K L}$ and P is the midpoint of $\overline{J L}$. Prove that $\Delta \mathrm{JKL} \sim \Delta \mathrm{NPM}$

3) In the adjoining figure, find x and y given $\triangle A B C \sim \triangle D E F$

4) In the following figure, find x and y given $\Delta P Q R \sim \Delta X Y Z$

5) Using the following information, answer the question.
$\mathrm{AO}=2.8 \mathrm{~cm}$
$\mathrm{BO}=2.6 \mathrm{~cm}$
$A B=2.5 \mathrm{~cm}$
$\mathrm{DO}=5.6 \mathrm{~cm}$
$C D=5 \mathrm{~cm}$
$\mathrm{CO}=5.2 \mathrm{~cm}$
$\angle \mathrm{A}=65^{\circ}$ and $\angle \mathrm{BOC}=125^{\circ}$.
What is the measure of $\angle \mathrm{C}$?

6) In the given figure line segments $A C$ and $D B$ are parallel. Line segment $A B$ divides line segment $C D$ such that $C O: O D=3: 4$. The length of $O B$ is given as 12 cm . What is the length of $A B$?

7) The given figure shows a parallelogram PQRS. T is a point on side $S R$ such that $\mathrm{ST}: \mathrm{TR}=5: 2$. PT is extended and intersects QR at A . If $\mathrm{PB}=$ 70 cm , then what is the length of $A B$

