
WORKSHEET ON MODULE 3/5 OF TRIANGLES

SOLVED EXAMPLE

1) In the given figure AC and BD intersect each other at point P and $\frac{AP}{CP} = \frac{BP}{DP}$. Prove that $\Delta ABP \sim \Delta CDP$

Solution:

Given: $\frac{AP}{CP} = \frac{BP}{DP}$

To prove: ΔABP~ΔCDP

Proof:

In \triangle ABP and \triangle CDP, $\frac{AP}{CP} = \frac{BP}{DP}$ (Given)

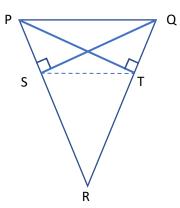
 $\angle APB = \angle CPD$ (Vertically opposite angles)

Therefore, by SAS similarity, $\triangle ABP \sim \Delta CDP$

- 2) The given figure shows ΔPQR in which PT and QS are altitudes drawn on the sides RQ and PR respectively. In ΔPQR , the relation $SR \times PQ = x \times ST$ is satisfied. Which of the following is the value of x
 - a. RQ
 - b. RT
 - c. PT
 - d. QT

Solution:

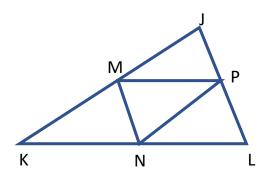
In Δ PTR and Δ QSR,

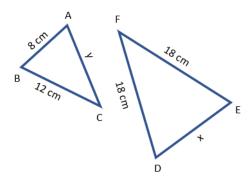

$$\angle PTR = \angle QSR = 90^{\circ}$$
 and $\angle R$ is common

Therefore, $\Delta PTR \sim \Delta QSR$ (by AA similarity)

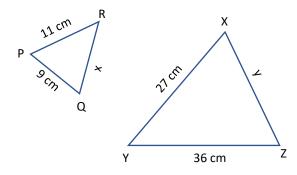
$$\Rightarrow \frac{PR}{QR} = \frac{TR}{SR}$$
 (Corresponding sides of similar triangles)

Therefore,
$$\frac{PR}{TR} = \frac{QR}{SR}$$


 \Rightarrow Δ PQR \sim Δ TSR (By SAS similarity with common \angle R)


$$\Rightarrow \frac{PQ}{TS} = \frac{QR}{SR}$$
 (Corresponding sides of similar triangles)
 $\Rightarrow SR \times PQ = RQ \times ST$
Thus, the value of x is RQ

Solve the following:


- 1) The ratio of the corresponding sides of two triangles ABC and PQR is 1:3. If $\angle P = 55^{\circ}$ and $\angle Q = 30^{\circ}$, what is the measure of $\angle C$?
- 2) In the adjoining figure, M is the midpoint of \overline{JK} , N is the midpoint of \overline{KL} and P is the midpoint of \overline{JL} . Prove that $\Delta JKL \sim \Delta NPM$

3) In the adjoining figure, find x and y given $\Delta ABC \sim \Delta DEF$

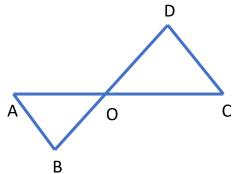
4) In the following figure, find x and y given $\Delta PQR \sim \Delta XYZ$

5) Using the following information, answer the question.

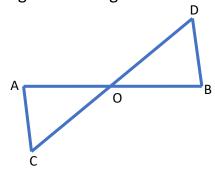
$$AO = 2.8 \text{ cm}$$

$$BO = 2.6 \text{ cm}$$

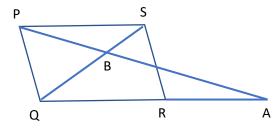
$$AB = 2.5 \text{ cm}$$


$$DO = 5.6 cm$$

$$CD = 5 cm$$


$$CO = 5.2 cm$$

$$\angle A = 65^{\circ}$$
 and $\angle BOC = 125^{\circ}$.


What is the measure of $\angle C$?

6) In the given figure line segments AC and DB are parallel. Line segment AB divides line segment CD such that CO:OD = 3:4. The length of OB is given as 12 cm. What is the length of AB?

7) The given figure shows a parallelogram PQRS. T is a point on side SR such that ST:TR = 5:2. PT is extended and intersects QR at A. If PB = 70cm, then what is the length of AB

