WORKSHEET ON MODULE 4/5 OF TRIANGLES

SOLVED EXAMPLE

1) Two isosceles triangles have equal vertical angles and their areas are in the ratio $9: 16$. Find the ratio of their corresponding heights (altitudes)

Given: $\triangle A B C$ and $\triangle P Q R$ are isosceles and $\angle B A C=\angle Q P R$.
$A D$ and PS are the altitudes.

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{9}{16}
$$

Solution:
In $\triangle A B C$ and $\triangle P Q R, A B=A C$ and $P Q=P R$ (isosceles triangles)
$\Rightarrow \frac{A B}{P Q}=\frac{A C}{P R}$
$\Rightarrow \triangle A B C \sim \triangle P Q R$ (By SAS similarity condition)
We know that, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}$
In $\triangle A B D$ and $\triangle P Q S, \angle A D B=\angle P S Q=90^{\circ}$
$\angle B A C=\angle Q P R \Rightarrow \angle B A D=\angle Q P S$
By AA similarity $\triangle A B D \sim \triangle P Q S$
$\Rightarrow \frac{A B}{P Q}=\frac{A D}{P S}$
From (1), $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P S^{2}}=\frac{9}{16} \Rightarrow \frac{A D}{P S}=\frac{3}{4}$
2) $A B C$ is a right triangle right angled at C. Let $B C=a, C A=b, A B=c$ and let p be the length of perpendicular from C on AB , prove that
a. $\mathrm{cp}=\mathrm{ab}$
b. $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Solution:
a. Draw $C D \perp A B$. Let $\mathrm{CD}=\mathrm{p}$

$$
\begin{align*}
& \left.\operatorname{ar}(\triangle A B C)=\frac{1}{2}(B C \times C A)=\frac{1}{2} a b \quad \text { (Taking base as } \mathrm{BC} \text { and altitude as } \mathrm{AC}\right) \tag{1}\\
& \left.\operatorname{ar}(\triangle A B C)=\frac{1}{2}(A B \times C D)=\frac{1}{2} c p \quad \text { (Taking base as } \mathrm{AB} \text { and altitude as } \mathrm{CD}\right) \\
& \text { From }(1) \text { and }(2) \text {, we get } \\
& \text { cp }=\mathrm{ab}
\end{align*}
$$

b. We are given that $\triangle \mathrm{ABC}$ is a right-angled triangle with $\angle C=90^{\circ}$

Therefore, by Pythagoras theorem, we get

$$
\begin{aligned}
& A B^{2}=B C^{2}+A C^{2} \\
& \Rightarrow c^{2}=a^{2}+b^{2} \\
& \Rightarrow\left(\frac{a b}{p}\right)^{2}=a^{2}+b^{2}(\text { since } \mathrm{cp}=\mathrm{ab}) \\
& \Rightarrow \frac{1}{p^{2}}=\frac{a^{2}+b^{2}}{a^{2} b^{2}} \\
& \Rightarrow \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}
\end{aligned}
$$

SOLVE THE FOLLOWING

1) In the given figure, $A B C D$ is a parallelogram P is a point on $B C$, such that $B P: P C=1: 2$. $D P$ is produced meets $A B$ produced at Q. Given area of triangle $B P Q=20 \mathrm{~cm}^{2}$, calculate the area of triangle DCP.

2) Prove that the ratio of areas of two similar triangles is equal to the squares of the ratios of their corresponding sides. Using the above theorem, given that the areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $144 \mathrm{~cm}^{2}$ and the largest side of the smaller triangle is 27 cm , find the largest side of the larger triangle.
3) ABC is a triangle, right angled at C and $\mathrm{AC}=\sqrt{3} \mathrm{BC}$. Prove that $\angle A B C=60^{\circ}$

4) Let ABC be a triangle, right-angled at C . If D is the mid-point of BC , prove that $A B^{2}=$ $4 A D^{2}-3 A C^{2}$
5) Prove that in a right-angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides. Use the above theorem and show that $P R^{2}=P Q^{2}+Q R^{2}-$ 2QM. QR

6) A 6.5 m long ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall. Find the height of the wall where the top of the ladder touches it.
7) In the given figure, $\triangle A B C$ is right-angled at C and $D E \perp A B$. Prove that $\triangle A B C \sim \triangle A D E$ and hence find the lengths of AE and DE

