WORKSHEET ON MODULE 5/5 OF TRIANGLES

SOLVED EXAMPLES

1) Triangle $A B C$ is right angled at C and $C D$ is perpendicular to $A B$. Prove that $B C^{2} \times A D=A C^{2} \times B D$.

Solution:
Given: $\triangle \mathrm{ABC}$ is right-angled at C and $C D \perp A B$
To Prove: $B C^{2} \times A D=A C^{2} \times B D$

Proof:
If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other

$$
\Rightarrow \triangle A C D \sim \triangle C B D
$$

Therefore, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides

$$
\frac{\operatorname{ar}(\triangle A C D)}{\operatorname{ar}(\triangle C B D)}=\left(\frac{A C}{B C}\right)^{2}
$$

Since area of a triangle $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& \operatorname{ar}(\triangle A C D)=\frac{1}{2} \times A D \times C D \\
& \operatorname{ar}(\triangle C B D)=\frac{1}{2} \times B D \times C D
\end{aligned}
$$

$$
\Rightarrow \quad \frac{\frac{1}{2} \times A D \times C D}{\frac{1}{2} \times B D \times C D}=\left(\frac{A C}{B C}\right)^{2}
$$

$$
\Rightarrow \quad \frac{A D}{B D}=\left(\frac{A C}{B C}\right)^{2}
$$

$$
\Rightarrow \quad B C^{2} \times A D=A C^{2} \times B D
$$

2) Find the value of x that makes $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$

Solution:
Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, by SSS Similarity
we get $\frac{A B}{D E}=\frac{B C}{E F}$
$\frac{4}{12}=\frac{\mathrm{x}-1}{18}$
So, $4 \times 18=12(x-1)$

$7 \mathrm{~cm}=\mathrm{x}$

Checking: Check the side lengths are proportional.
When $\mathrm{x}=7 \mathrm{~cm}, \mathrm{BC}=\mathrm{x}-1=6 \mathrm{~cm}$
$\frac{A B}{D E}=\frac{4}{12}$
$\frac{B C}{E F}=\frac{6}{18}$
$\mathrm{DF}=3(\mathrm{x}+1)=3(7+1)=24$
$\frac{A C}{D F}=\frac{8}{24}$
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{1}{3}$
Therefore, when $\mathrm{x}=7 \mathrm{~cm}$, the triangles are similar by SSS Similarity.

SOLVE THE FOLLOWING

1) In the figure $A B C$ and $D B C$ are two right triangles. Prove that $A P \times P C=B P \times P D$.

2) Let $A B C$ be a triangle and D and E be two points on side $A B$ such that $A D=B E$. If $D P \| B C$ and $E Q \| A C$, then prove that $P Q \| A B$.

3) The height of two building is 34 m and 29 m respectively. If the distance between the two building is 12 m , find the distance between their tops.
4) The areas of two similar triangles are respectively $9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$. Determine the ratio of the corresponding sides.
5) in figure, $A B\|P Q\| C D, A B=x$ units, $C D=y$ units and $P Q=z$ units, prove that
$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$

6) The lengths of the diagonals of a rhombus are 30 cm and 40 cm . Find the side of the rhombus.
