Class: XI

Atomic Energy Education Society, Mumbai

Topic: Chaper-7: EQUILIBRIUM HANDOUTS OF MODULE 6 OF 6

Subject: Chemistry

<u>pH Scale</u>

- > The pH scale is used to express concentration of H_3O^+ in an aqueous solution.
- > For expressing the H_3O^+ ion concentration a logarithmic scale was devised by P.L.Sorensen.
- The pH of a solution is defined as the negative logarithm (log) of the hydronium ion (hydrogen ion) concentration.
- \triangleright pH = log [H₃O⁺]
- \succ [H₃O⁺] = 1 X 10^{−pH}
- In similar way, pOH is the negative logarithm of the hydroxide ion concentration. pOH = - log [OH⁻]
- In pure water,
 - > $K_w = [H_3O^+] [OH^-] = 1 \times 10^{-14} M^2$
 - \succ [H₃O⁺] = [OH⁻] = 1 x 10⁻⁷ M
 - > pH = pOH = $-\log(1 \times 10^{-7})$
 - ≻ pH = pOH = 7
 - > Therefore $pH + pOH = pK_w = 14$
- Concept is:
 - ➢ At 25 °C,
 - > Acidic solution : pH < 7.0 ; pOH > 7.0
 - > Basic solution : pH > 7.0; pOH < 7.0
 - > Neutral solution : pH = 7.0; pOH = 7.0

Buffer Solution

- A solution that maintains its pH when a small amount of a strong acid or a strong base is added to it. It is also defined as a solution which contains weak acid or weak base with salt that has its conjugate pair.
- Two types of buffer solution:
- Acidic buffer solution
- Basic buffer solution
- ACIDIC BUFFER SOLUTION: Has pH < 7: An acidic buffer solution is made up of a weak acid and its salt (containing its conjugate base)
- Example: CH₃COOH / CH₃COONa, H₂CO₃ / NaHCO₃, H₃PO₄ / NaH₂PO₄, HCOOH / HCOONa
- equation, popularly known as the Henderson equation
- pH of acidic buffer = pKa + log ([salt]/[acid])
- Basic Buffer Solution: Has pH > 7: Basic buffer solution is made up of a weak base and its salt (containing its conjugate)
- The equation pOH of basic buffer = pKb + log ([salt]/[base]) is the Henderson-Hasselbalch
- Example:NH₄OH / NH₄Cl, NH₃ / NH₄Cl, NH₃ / (NH₄)₂CO₃
- Buffer Capacity: The number of millimoles of acid or base to be added to a litre of buffer solution to change the pH by one unit is the Buffer capacity of the buffer.

Formula: Buffer Capacity = millimoles of acid or base / (ΔpH)

Solubility:

• The solubility of a substance is the amount of that substance that will dissolve in a given amount of solvent. "Solubility" may be considered to be equilibrium; the equilibrium is

between solid and ions in solution. Any ionic solid is 100% ionized in aqueous solution; once it actually dissolves.

Factors Affecting Solubility:

- Temperature: Solubility generally increases with temperature.
- Common ion effect: Common ions reduce solubility
- pH of solution: pH affects the solubility of ionic compounds.
- Formation of complex ion: The formation of complex ion increases solubility
- Some salts are soluble but most are insoluble or slightly soluble in water.
- A saturated solution is a solution that contains the maximum amount of solute that can dissolve in a solvent.
- The solubility of a salt is the amount of solid that dissolved in a known value of saturated solution.
- The unit of solubility used may be g L⁻¹ or mol L⁻¹
- Molar solubility is the maximum number of moles of solute that dissolves in a certain quantity of solvent at a specific temperature.

Different types of solution

- <u>Unsaturated solution</u>: More solute can be dissolved in it.
- <u>Saturated solution</u>: No more solute can be dissolved in it. Any more of solute you add will not dissolve. It will precipitate out.
- <u>Super saturated solution:</u> Has more solute than can be dissolved in it. The solute precipitates out.

Solubility product constant.

- K_{sp} is the product of the molar concentrations of the ions involved in the equilibrium, each raised to the power of its stoichiometric coefficient in the equilibrium equation.
- K_{sp} is called the solubility product constant.
- The degree of solubility of a salt is shown by the value of Ksp.
- Soluble salt such NaCl and KNO_3 has an extremely high value of K_{sp} .
- The smaller the value of K_{sp} the less soluble the compound in water.
- Temperature \uparrow , solubility $\uparrow,\,K_{sp}\,\uparrow$
- Ksp= x^xy^y(S)^{x+y}
 - \circ X= No of cation =1, y=No of Anion=2, S is solubility of salt
- If we mix a solution containing M⁺ ions with one containing A⁻ ions, the ionic product, Q_{sp} is given by : Q_{sp} = [M⁺] [A⁻]
- Qsp < Ksp;Solution is not saturated. Solid will dissolve and no precipitate formed.
- Qsp = Ksp; Saturated solution formed. System is in equilibrium.
- Qsp > Ksp; Solution is supersaturated; Ions will form precipitate until the ionic concentration product of the system equals the Ksp (until the system reaches equilibrium).