Atomic Energy Education Society,

Mumbai
Class X
Computer Science
Basics of Computational Thinking

Module - 01/02

Prepared By:

Ashok Kumar Rao

AECS Narora

Introduction

Computers can be used to help us solve problems.
However, before a problem can be tackled, the
problem itself and the ways in which it could be
solved need to be understood.

Computational thinking allows us to do this.
Computational thinking allows us to take a complex
problem, understand what the problem is and
develop possible solutions. We can then present
these solutions in a way that a computer, a human, or
both, can understand.

Computational Thinking

Computational Thinking (CT) is a problem solving
process that includes a number of characteristics and
dispositions. Computational thinking involves a
number of skills, including: Formulating problems in
a way that enables us to use a computer and other
tools to help solve them.

Logically organizing and analyzing data.

Simple Daily Life Examples

** Looking up a name in an alphabetically sorted list
** Linear: start at the top
** Binary search: start in the middle
% Cooking a gourmet meal
¢ Parallel processing: You don’t want the meat to get cold while
you’re cooking the vegetables.
+** Cleaning out your garage
** Keeping only what you need vs. throwing out stuff when you run
out of space.
** Doing laundry
** Pipelining the wash, dry, and iron stages.
% getting food at a buffet
** Plates, salad, entrée, dessert stations

Computational Thinking

Computational Thinking is essential to the
development of computer applications, but it can
also be used to support problem solving across all
disciplines, including the humanities, math, and
science. Students who learn CT across the curriculum
can begin to see a relationship between academic
subjects, as well as between life inside and outside
of the classroom.

CT in Other Sciences, Math, and Engineering
I 5

Biology
- Shotgun algorithm expedites sequencing (
of human genome
- DNA sequences are strings in a language
- Protein structures canbe modeled as knots A
- Protein kinetics can be modeled as computational proce,sse,s
- Cells as a self-regulatory system are like electronic circuits

Brain Science

- Modeling the brain as a computer

- Vision as a feedback loop

- Analyzing fMRI data with machine learning

CT in Other Sciences, Math, and Engineering

Chemisfr'y [Madden, Fellow of Royal Society of Edinburgh]
- Atomistic calculations are used to explore
chemical phenomena
- Optimization and searching algorithms identify,
best chemicals for improving reaction
conditions to improve yields

- redit NAGA

Geology

- Modeling the earth’s surface to the sun,
from the inner core to the surface

- Abstraction boundaries and hierarchies of
complexity model the earth and our atmosphere

The Principles of Computational Thinking:

These are key techniques that will help you think
computationally through a complex problem

(challenge, or task) before writing a single line of
code.

1. Decomposition

2. Pattern Recognition
3. Abstraction.

4. Algorithm Design

Decomposition

This is breaking down a complex problem or system

into smaller, more e
problems are solve
bigger complex prob
i.e. Breaking down ¢
smaller, managea

asily solved parts. These smaller
d one after another until the
em is solved.

ata, processes, or problems into

ple parts is termed as

decomposition or modularization.

Advantages of Decomposition

** Decomposition allows us to break a complex
problem into a number of smaller and
independent modules which facilitates us to work
as team where every team works to solve a smaller
and independent module and later we collaborate
all such efforts to solve the complex problem.

*** Decomposition allows us to divide and conquer
complex problems.

Advantages of Decomposition

*** Decomposition also allows us to localize faults as
and when it occurs and subsequent quick
rectification.

*** Decomposition introduces the concept of layered
approach where a complex problem s
decomposed into a number of independent and
loosely coupled modules. This modular approach
helps us to incorporate modifications at a later
stage easily.

Pattern Recognition

Pattern Recognition is observing patterns, trends and
regularities in data. Looking for similarities among
and within problems.

This is done to find and establish a generalized
approach which can be used to solve similar other
problems.

Generalization

Generalization is the tendency to respond in the
same way to different but similar problems.
For example, a group of statements executed
repeatedly to find sum of a finite integers can also be

used to find product of such integers i.e. A “for loop”
which can find sum of first ten integers can also be
modified to find average or product of such integers.
Thus through generalization we devise methods and
algorithms to solve problems similar to the problem
at hand.

