CHAPTER-3
PLAYING WITH NUMBERS

LET'S BEGIN WITH A GAME!

$>$ There are six marbles. What are the possible ways of arranging them in rows?

6 can be written as the product of two numbers in different ways: $6=1 \times 6$; $6=2 \times 3 ; 6=3 \times 2 ; 6=6 \times 1$

WHAT ARE FACTORS?

\Rightarrow A factor of a number is an exact divisor
>1 is a factor of every number
\Rightarrow Every number is a factor of itself
$>$ Every factor is less than or equal to the given number
$>$ Number of factor of a given number are finite

WHAT ARE MULTIPLES?

$>$ A number is a multiple of its factors
$>$ Every multiple of a number is greater than or equal to that number
>Number of multiples of a given number is infinite
$>$ Every number is a multiple of itself

PERFECT NUMBERS

\Rightarrow A number for which the sum of all its factors is equal to twice the number is called a perfect number
e.g. Factors of 6 are $=1,2,3$ and 6
$1+2+3+6=12=$ Twice the number 6

EXAMPLE-1

$>\underline{\text { Question: Write all the factors of } 50}$
$>$ Solution: $50=1 \times 50$
$50=2 \times 25$
$50=5 \times 10$
$50=10 \times 5$
$50=25 \times 2$
$50=50 \times 1$
$>$ Thus, all the factors of 50 are:1, 2, 5, 10, $25 \& 50$

EXAMPLE-2

Question: Write the first five multiples of 20

Solution: | $20 \times 1=20$ |
| :--- |
| $20 \times 2=20$ |
| $20 \times 3=60$ |
| $20 \times 4=80$ |
| $20 \times 5=100$ |

$>$ The required multiples are $20,40,60,80 \& 100$

EXERCISE-1

1. Write all the factors of the following numbers
(a) 15
(b)21
(c) 28
(d) 40
(d) 27
(e) 36
(f) 100
2. Write the first five multiples of
(a) 4
(b) 6
(c) 8
(d) 10
(e) 7
3. Complete the table by writing the multiples of 9 up to 100

9		27			54					99

PRIME NUMBERS AND COMPOSITE NUMBERS

NO.	FACTORS	NO. OF FACTORS	The number 1 has only one factor(i.e. itself)
1	1	1	
2	1,2	2	
3	1,3	2	
4	1,2,4	3	2, $3,5,7,11$,etc are having exactly two factors 1 and the number itself
5	1,5	2	
6	1,2,3,6	4	
7	1,7	2	
8	1,2,4,8	4	\rightarrow There are numbers $4,6,8,9,10,12$,etc having more than two factors
9	1,3,9	3	
10	1,2,5,10	4	
11	1,11	2	
12	1,2,3,4,6,12	6	9

THINGS TO REMEMBER

>1 is neither prime nor composite
$>$ Prime numbers: Numbers(other than 1)with only two factors namely 1 and itself
$>$ Composite numbers: Numbers that have more than two factors

SIEVE OF ERATOSTHENES METHOD : STEP-1

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

STEP-2

1	2	3	4	5	6	7	8	9	$1 Q$
11	12	13	14	15	16	17	18	19	$2 Q$
21	22	23	24	25	26	27	28	29	$3 Q$
31	32	33	34	35	36	37	38	39	$4 Q$
41	42	43	44	45	46	47	48	49	$5 Q$
51	52	53	54	55	56	57	58	59	$6 Q$
61	62	63	64	65	66	67	68	69	$7 Q$
71	72	73	74	75	76	77	78	79	$8 Q$
81	82	83	84	85	86	87	88	89	$5 Q$
91	98	93	54	95	56	97	98	99	$18 Q$

STEP-3

1	2	3	4	5	6	7	2	9	$1 Q$
11	12	13	14	16	16	17	18	19	$2 Q$
21	22	23	24	25	26	27	28	29	$3 Q$
31	32	33	34	35	36	37	38	39	$4 Q$
41	42	43	44	45	46	47	48	49	$5 Q$
51	52	53	54	55	56	57	58	59	$6 Q$
61	62	63	64	65	66	67	68	69	72
71	72	73	74	75	76	77	78	79	$8 Q$
81	82	83	84	85	86	87	88	89	$5 Q$
91	92	93	94	95	96	97	98	99	$18 Q$

STEP-4

1	2	3	4	5	6	7	8	9	$1 Q$
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	$3 Q$
31	32	33	34	35	36	37	38	39	$4 Q$
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	10
71	72	73	74	55	76	77	78	79	$8 Q$
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

STEP-5

1	2	3	4	5	6	7	2	9	$1 Q$
11	12	13	14	15	16	17	18	19	$2 Q$
21	22	23	24	25	26	27	28	29	$3 Q$
31	32	33	34	35	36	37	38	39	$4 Q$
41	42	43	44	45	46	47	48	49	$5 Q$
51	52	53	54	55	56	58	58	59	$6 Q$
61	62	63	64	65	66	67	68	69	12
71	72	73	74	75	76	77	78	79	$8 Q$
81	82	83	84	85	86	87	88	89	$9 Q$
31	92	93	94	95	96	97	98	99	$18 Q$

>All the encircled numbers are prime \Rightarrow All the crossed-out numbers are composite

THINGS TO REMEMBER

>2 is the smallest prime number and is even
$>$ Every prime number other than 2 is odd
$>$ Two prime numbers whose difference is 2 are called twin primes

EXERCISE-2

1. Write all the prime numbers between 1 and 100.
2. What is the greatest prime number between 1 and 50 ?
3. Write 7 consecutive composite numbers less than 100 so that there is no prime numbers in between.
4. Express the following as a sum of two odd primes $\begin{array}{lllll}\text { (a)34 } & \text { (b)24 } & \text { (c)54 } & \text { (d)48 } & \text { (e)72 }\end{array}$
5. Give three pairs of twin primes
6. Express the following as the sum of three odd primes
(a)39
(b)41 (c)29
(d) 47 (e)55
thank you!
