..........

TRIANGLES

Definition of congruence

Similar Figures

Similarity of triangles

Applications of Similarity

Basic Proportionality Theorem

CONGRUENCE

Two geometric figures with exactly same shape and size

SIMILAR FIGURES

Two figures having same shape and not necessarily the same size are called similar figures

SIMILAR vs CONGRUENCE

All congruent figures are similar but all similar figures need not be congruent

SIMILARITY OF POLYGONS

SIMILARITY OF POLYGONS

- Two polygons of the same number of sides are similar, if
- their corresponding angles are equal and
- their corresponding sides are in the same ratio (or proportion)

SIMILARITY OF TRIANGLES

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar to each other.

* $\angle A=\angle D$
* $\angle B=\angle E$
* $\angle C=\angle F$
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

It must be noted that as done in the case of congruency of two triangles, the similarity of two triangles should also be expressed symbolically, using correct correspondence of their vertices. For example, for the triangles $A B C$ and $D E F$, we cannot write $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$ or $\triangle \mathrm{ABC} \sim \triangle \mathrm{FED}$. However, we can write $\triangle \mathrm{BAC} \sim \triangle \mathrm{EDF}$

BASIC PROPORTIONALITY THEOREM (or) THALES THEOREM

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio

DISCOVERY OF THALES THEOREM

When Thales travelled to Egypt, he was challenged by Egyptians to determine the height of one of several magnificent pyramids that they had constructed. Thales accepted the challenge and used similarity of triangles to determine the same successfully.

PROOF - BASIC PROPORTIONALITY THEOREM

Given: A triangle $A B C$ in which a line parallel to side $B C$ intersects other two sides $A B$ and $A C$ at D and E respectively.

To prove: $\quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

PROOF - BASIC PROPORTIONALITY THEOREM

Let us join $B E$ and $C D$ and then draw $D M$
$\perp A C$ and $E N \perp A B$.

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}
\end{aligned}
$$

Similarly, $\operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}$

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{2} \times \mathrm{DB} \times \mathrm{EN} \\
& \operatorname{ar}(\triangle \mathrm{DEC})=\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times A D \times E N}{\frac{1}{2} \times D B \times E N}=\frac{\mathrm{AD}}{\mathrm{DB}} \\
& \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{DEC})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \times E C \times D M}=\frac{\mathrm{AE}}{\mathrm{EC}}
\end{aligned}
$$

Since, $\triangle B D E$ and $\triangle D E C$ are on the same base DE and between the same parallels $B C$ and $D E$,

$$
\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{DEC})
$$

From the above three results, we get

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

PROBLEM BASED ON BASIC PROPORTIONALITY THEOREM

In the adjoining figure, $D E \| A C$ and $D F \| A E$.
Prove that $\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}$

Solution:
Given: DE || AC and DF || AE

To Prove: $\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}$

Consider $\triangle A B E$; It is given that $D F \| A E$
Therefore, by using Basic Proportionality Theorem,

$$
\begin{equation*}
\frac{B F}{F E}=\frac{B D}{D A} \tag{1}
\end{equation*}
$$

Consider $\triangle A B C$; It is given that $D E \| A C$

Therefore, by using Basic Proportionality
Theorem,

$$
\begin{equation*}
\frac{B E}{E C}=\frac{B D}{D A} \tag{2}
\end{equation*}
$$

From (1) and (2), we get,

$$
\frac{B F}{F E}=\frac{B E}{E C}
$$

APPLICATIONS OF SIMILARITY

Here are few applications of similarity

- By analyzing the shadows that make triangles, we can determine the actual height of the objects.
- Used in aerial photography to determine the distance from sky to a particular location on the ground.
- Used in Architecture to aid in design of their work.

