• • • • • • • • • • •

TRIANGLES

MODULE 2

CONTENTS

Converse of Basic Proportionality Theorem
Criteria for similarity

Angle-Angle similarity

CONVERSE OF BASIC PROPORTIONALITY THEOREM

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side

PROOF: CONVERSE OF BASIC PROPORTIONALITY THEOREM

- Given : In $\triangle ABC$, $\frac{AD}{DB} = \frac{AE}{EC}$
- To prove : DE || BC
- Construction: Draw a line segment DF such that DF ||BC

Proof

Statement	Reason
In ΔABC, DF BC	Construction
$\frac{AD}{DB} = \frac{AE}{EC} \qquad \qquad$	Given
$\frac{AD}{DB} = \frac{AF}{FC} \qquad \qquad$	Thales theorem (In ΔABC taking F in AC)

Statement	Reason	
$\frac{AE}{EC} = \frac{AF}{FC}$	From (1) and (2)	
$\frac{AE}{EC} + 1 = \frac{AF}{FC} + 1$ $\frac{AE + EC}{EC} = \frac{AF + FC}{FC}$ $\frac{AC}{EC} = \frac{AC}{FC}$	Adding 1 to both sides	D F E C
EC = FC Therefore, F coincides with E Thus DE BC	Cancelling AC on both sides	Б

HENCE PROVED

PROBLEM #1

In the adjoining figure, D and E are the points on AB and AC respectively.

Given :

AD = 4cm,

DB = 9cm,

AE = 6cm and

EC = 7.5cm

Check whether, DE || BC.

SOLUTION

In \triangle APQ and \triangle ABC,

$$\frac{AE}{EC} = \frac{6}{7.5} = \frac{4}{5}$$

BD = AB - AD = 9 - 4 = 5 cm

$$\frac{AD}{BD} = \frac{4}{5}$$
$$\frac{AD}{BD} = \frac{AE}{EC}$$

Therefore, DE || BC by the converse of BPT.

PROBLEM #2

In the adjoining figure, State whether PQ || EF.

Given,

DP = 3.9cm,

PE = 3cm,

DQ = 3.6cm

and QF = 2.4cm

SOLUTION

DP / PE = 3.9 / 3 = 13/10

DQ / QF = 3.6 /2.4 = 3/2

So, DP / PE \neq DQ / QF \Rightarrow PQ \Downarrow EF (PQ is not parallel to EF)

SIMILARITY OF TRIANGLES

NOTE: As done in the case of congruency of two triangles, the similarity of two triangles should also be expressed symbolically, using correct correspondence of their vertices. For example, for the triangles ABC and DEF, we cannot write Δ ABC ~ Δ EDF or Δ ABC ~ Δ FED. However, we can write Δ BAC ~ Δ EDF

CRITERIA FOR SIMILARITY OF TRIANGLES

- Even if the triangles have six parts, similarity of triangles can be proved by establishing relationship between less number of pairs of corresponding parts of the two triangles.
- Following are the criteria for similarity of triangles:
 - Angle Angle Angle similarity
 - Side Side Side similarity
 - Side Angle Side similarity

Angle – Angle – Angle (AAA) Criteria for Similarity of Triangles

- If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar
- Given: In $\triangle ABC$ and $\triangle DEF$, $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$
- To Prove:
 - AB/DE = BC/EF = AC/DF and \triangle ABC ~ \triangle DEF

Proof: AAA Criterion for Similarity of Triangles

Construction: Draw PQ such that DP = AB and DQ = AC

Proof:

In \triangle ABC and \triangle DPQ, \angle A = \angle D, DP = AB and DQ = AC

Therefore, $\triangle ABC \cong \triangle DPQ$ (by SAS congruence criteria)

 $\angle B = \angle DPQ$ (Corresponding parts of congruent triangles)

Also given that $\angle B = \angle E$,

 $\therefore \angle E = \angle DPQ$

This implies, PQ || EF (Since corresponding angles are equal)

Therefore,
$$\frac{DP}{PE} = \frac{DQ}{QF}$$
 (Basic Proportionality Theorem)
This implies $\frac{PE}{DP} = \frac{QF}{DQ}$ (Reciprocal)
 $\frac{PE}{DP} + 1 = \frac{QF}{DQ} + 1$
 $\frac{DE}{DP} = \frac{DF}{DQ}$
 $\frac{DP}{DE} = \frac{DQ}{DF}$ (Reciprocal)
i.e., $\frac{AB}{DE} = \frac{AC}{DF}$ (By construction DP = AB, DQ = AC)

Similarly when P'Q' is constructed so that AB = EQ' and BC = EP' it can

Α

В

D

P

F

С

Q

F

be proved that $\frac{AB}{DE} = \frac{BC}{EF}$ Thus $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

In \triangle ABC and \triangle DEF, given that the corresponding angles are equal and we have proved that the corresponding sides are in the same ratio.

Hence $\triangle ABC \sim \triangle DEF$

AA Criterion for Similarity of Triangles

- If two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angles will also be equal. Therefore, AAA similarity criterion can also be stated as follows:
- If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar. This may be referred to as the AA similarity criterion for two triangles

In triangles ABC and DEF

SOLVED EXAMPLE

In the given triangle PQR, LM is parallel to QR and PM: MR = 3: 4. Calculate the value of ratio PL/PQ and LM/QR Solution: In \triangle PLM and \triangle PQR, As LM || QR, corresponding angles are equal. $\angle PLM = \angle PQR$ $\angle PML = \angle PRQ$ Hence, $\triangle PLM \sim \triangle PQR$ by AA criterion for similarity. So, we have PM/PR = LM/QR3/7 = LM/QR [Since, PM/MR = $\frac{3}{4} \Rightarrow PM/PR = \frac{3}{7}$] And, by BPT we have $PL/LQ = PM/MR = \frac{3}{4}$ LQ/PL = 4/31 + (LQ/PL) = 1 + 4/3(PL + LQ)/PL = (3 + 4)/3PQ/PL = 7/3Hence, PL/PQ = 3/7

THANK YOU