

CONTENTS

- Converse of Basic Proportionality Theorem
- Criteria for similarity
- Angle-Angle similarity

CONVERSE OF BASIC PROPORTIONALITY THEOREM

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side

PROOF: CONVERSE OF BASIC PROPORTIONALITY THEOREM

- Given : $\ln \triangle \mathrm{ABC}, \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
- To prove : DE || BC
- Construction: Draw a line segment DF such that DF ||BC

Proof

Statement	Reason
$\operatorname{In} \triangle \mathrm{ABC}, \mathrm{DF} \mathrm{\|\|} \mathrm{BC}$	Construction
$\frac{A D}{D B}=\frac{A E}{E C}$	$--------------(1)$
$\frac{A D}{D B}=\frac{A F}{F C}$	Given

Statement	Reason	
$\frac{A E}{E C}=\frac{A F}{F C}$ From (1) and (2) $\frac{A E}{E C}+1=\frac{A F}{F C}+1$ Adding 1 to both sides $\frac{A E+E C}{E C}=\frac{A F+F C}{F C}$ $\frac{A C}{E C}=\frac{A C}{F C}$ Cancelling AC on both sides $\mathrm{EC}=\mathrm{FC}$ Therefore, F coincides with E Thus DE \\|BC		

HENCE PROVED

PROBLEM \#1

In the adjoining figure, D and E are the points on $A B$ and $A C$ respectively.
Given :

$$
\begin{aligned}
\mathrm{AD} & =4 \mathrm{~cm}, \\
\mathrm{DB} & =9 \mathrm{~cm}, \\
\mathrm{AE} & =6 \mathrm{~cm} \text { and } \\
\mathrm{EC} & =7.5 \mathrm{~cm}
\end{aligned}
$$

Check whether, DE || BC.

SOLUTION

In $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$,

$$
\frac{A E}{E C}=\frac{6}{7.5}=\frac{4}{5}
$$

$B D=A B-A D=9-4=5 \mathrm{~cm}$

$$
\begin{gathered}
\frac{A D}{B D}=\frac{4}{5} \\
\frac{A D}{B D}=\frac{A E}{E C}
\end{gathered}
$$

Therefore, DE || BC by the converse of BPT.

PROBLEM \#2

In the adjoining figure, State whether PQ || EF.

Given,
DP $=3.9 \mathrm{~cm}$,
$P E=3 \mathrm{~cm}$,
$D Q=3.6 \mathrm{~cm}$
and $Q F=2.4 \mathrm{~cm}$

SOLUTION

$$
\begin{aligned}
& D P / P E=3.9 / 3=13 / 10 \\
& D Q / Q F=3.6 / 2.4=3 / 2
\end{aligned}
$$

So, DP / PE $\neq \mathrm{DQ} / \mathrm{QF}$
$\Rightarrow P Q \nVdash E F$ ($P Q$ is not parallel to $E F$)

SIMILARITY OF TRIANGLES

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar to each other.
$\star \angle A=\angle D$
$* \angle B=\angle E$

* $\angle C=\angle F$
$* \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}$
$\triangle A B C \sim \triangle D E F$

NOTE: As done in the case of congruency of two triangles, the similarity of two triangles should also be expressed symbolically, using correct correspondence of their vertices. For example, for the triangles $A B C$ and DEF, we cannot write $\triangle A B C \sim \triangle E D F$ or $\triangle A B C \sim \Delta$ FED. However, we can write $\triangle B A C \sim \triangle E D F$

CRITERIA FOR SIMILARITY OF TRIANGLES

- Even if the triangles have six parts, similarity of triangles can be proved by establishing relationship between less number of pairs of corresponding parts of the two triangles.
- Following are the criteria for similarity of triangles:
- Angle - Angle - Angle similarity
- Side - Side - Side similarity
- Side - Angle - Side similarity

Angle - Angle - Angle (AAA) Criteria for Similarity of Triangles

- If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar
- Given: In $\triangle A B C$ and $\triangle D E F, \angle A$ $=\angle D, \angle B=\angle E, \angle C=\angle F$
- To Prove:
$A B / D E=B C / E F=A C / D F$ and $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

Proof: AAA Criterion for Similarity of Triangles

Construction: Draw PQ such that $D P=A B$ and $D Q=A C$
Proof:
In $\triangle A B C$ and $\triangle D P Q, \angle A=\angle D, D P=A B$ and $D Q=A C$ Therefore, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DPQ}$ (by SAS congruence criteria)
$\angle B=\angle D P Q$ (Corresponding parts of congruent triangles)
Also given that $\angle B=\angle E$,
$\therefore \angle \mathrm{E}=\angle \mathrm{DPQ}$
This implies, PQ || EF (Since corresponding angles are equal)

Therefore, $\frac{D P}{P E}=\frac{D Q}{Q F}$ (Basic Proportionality Theorem)
This implies $\frac{P E}{D P}=\frac{Q F}{D Q}$ (Reciprocal)

$$
\begin{aligned}
\frac{P E}{D P}+1 & =\frac{Q F}{D Q}+1 \\
\frac{D E}{D P} & =\frac{D F}{D Q} \\
\frac{D P}{D E} & =\frac{D Q}{D F} \text { (Reciprocal) }
\end{aligned}
$$

i.e., $\frac{A B}{D E}=\frac{A C}{D F}$ (By construction $\mathrm{DP}=\mathrm{AB}, \mathrm{DQ}=\mathrm{AC}$)

Similarly when $P^{\prime} Q^{\prime}$ is constructed so that $A B=E Q^{\prime}$ and $B C=E P^{\prime}$ it can
 be proved that $\frac{A B}{D E}=\frac{B C}{E F}$

Thus $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
In $\triangle A B C$ and $\triangle D E F$, given that the corresponding angles are equal and we have proved that the corresponding sides are in the same ratio.

Hence $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

AA Criterion for Similarity of Triangles

- If two angles of a triangle are respectively equal to two angles of another triangle, then by the angle sum property of a triangle their third angles will also be equal. Therefore, AAA similarity criterion can also be stated as follows:
- If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar. This may be referred to as the AA similarity criterion for two triangles

In triangles $A B C$ and DEF

Case 1:

- $\angle \mathrm{A}=\angle \mathrm{D}=30^{\circ}$
- $\angle B=\angle E=60^{\circ}$
- $\angle \mathrm{C}=\angle \mathrm{F}=90^{\circ}$
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
SIMILAR

Case 3:

- $\angle A \neq \angle D$,
- $\angle B=\angle E$,
- $\angle C \neq \angle F$

NOT SIMILAR

SOLVED EXAMPLE

In the given triangle PQR, LM is parallel to QR and PM: MR = 3: 4.
Calculate the value of ratio PL/PQ and LM/QR
Solution:
In $\triangle P L M$ and $\triangle P Q R$,
As LM || QR, corresponding angles are equal.
$\angle P L M=\angle P Q R$
$\angle P M L=\angle P R Q$
Hence, $\triangle \mathrm{PLM} \sim \triangle \mathrm{PQR}$ by AA criterion for similarity.
So, we have
$\mathrm{PM} / \mathrm{PR}=\mathrm{LM} / \mathrm{QR}$
$3 / 7=L M / Q R$ [Since, $P M / M R=3 / 4 \Rightarrow P M / P R=3 / 7$]
And, by BPT we have

$\mathrm{PL} / \mathrm{LQ}=\mathrm{PM} / \mathrm{MR}=3 / 4$
LQ/PL = 4/3
$1+(L Q / P L)=1+4 / 3$
$(P L+L Q) / P L=(3+4) / 3$
$P Q / P L=7 / 3$
Hence, PL/PQ = 3/7

THANK YOU

