\qquad

TRIANGLES

MODULE 3

CONTENTS

Properties of Similar Triangles

Criteria for Similarity of Triangles

- SSS similarity criterion
- SAS similarity criterion

PROPERTIES OF SIMILAR TRIANGLES

$\triangle A B C \sim \triangle D E F$
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar to each other.

$$
\begin{aligned}
& * \angle A=\angle D \\
& * \angle B=\angle E \\
& * \angle C=\angle F \\
& * \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
\end{aligned}
$$

1. Angle - Angle - Angle Similarity Criterion

- If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar
Corollary: Angle - Angle Similarity
Criterion
- If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.

2. Side - Side - Side Similarity Criterion
3. Side - Angle - Side Similarity Criterion

STATEMENT:

If in two triangles, sides of one triangle are proportional to (i.e., in the same ratio of) the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar.

Side - Side - Side Similarity Criterion

$$
\frac{\mathrm{AB}}{\mathrm{YZ}}=\frac{\mathrm{BC}}{\mathrm{XZ}}=\frac{\mathrm{AC}}{\mathrm{XY}}
$$

$\Delta A B C \sim \Delta Y Z X$

Proof: SSS Criterion for Similarity of Triangles

- Given: $\ln \triangle A B C$ and $\triangle D E F, \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
- To Prove:

$$
\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{~B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F} \text { and } \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}
$$

- Construction: Draw $P Q$ such that $D P=A B$ and $D Q=A C$

Proof:

In $\triangle A B C$ and $\triangle D P Q, \frac{A B}{D E}=\frac{A C}{D F}, D P=A B$ and $D Q=A C$

Therefore, $\frac{\mathrm{DP}}{\mathrm{DE}}=\frac{\mathrm{DQ}}{\mathrm{DF}} \Rightarrow \frac{\mathrm{DE}}{\mathrm{DP}}=\frac{\mathrm{DF}}{\mathrm{DQ}}$
Subtracting 1 from both sides and taking reciprocal, we get $\frac{\mathrm{DP}}{\mathrm{PE}}=\frac{\mathrm{DQ}}{\mathrm{QF}}$

Thus PQ || EF (By converse of Basic Proportionality Theorem)
$\angle D P Q=\angle E$ and $\angle D Q P=\angle F$
$\triangle \mathrm{DPQ} \sim \triangle \mathrm{DEF}$ (by AA similarity criteria)
Therefore, $\frac{\mathrm{DP}}{\mathrm{DE}}=\frac{\mathrm{DQ}}{\mathrm{DF}}=\frac{\mathrm{PQ}}{\mathrm{EF}}$
Given the equality of ratios, $\frac{D P}{D E}=\frac{D Q}{D F}=\frac{B C}{E F}$
$\therefore B C=P Q$
$\triangle \mathrm{ABC} \cong \triangle \mathrm{DPQ}$ (SSS congruence condition)
By corresponding parts of congruent triangles, $\angle A=\angle D$

Also, $\angle B=\angle E$ and $\angle C=\angle F$
In $\triangle A B C$ and $\triangle D E F$, given that the corresponding sides are in the same ratio and we have proved that the corresponding angles are equal.

Hence $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$

SOLVED EXAMPLE

Are triangles $V Z W$ and $V X Y$ similar? If yes, mention the similarity criteria and similarity relationship.

Solution:

$$
\begin{gathered}
\frac{V Z}{V Y}=\frac{16}{16+8}=\frac{2}{3} \\
\frac{V W}{V X}=\frac{18}{18+9}=\frac{2}{3} \\
\frac{W Z}{X Y}=\frac{22}{33}=\frac{2}{3}
\end{gathered}
$$

Since, $\frac{V Z}{V Y}=\frac{V W}{V X}=\frac{W Z}{X Y}, \Delta \boldsymbol{V} \boldsymbol{Z} \boldsymbol{W} \sim \Delta \boldsymbol{V} \boldsymbol{Y} \boldsymbol{X}$ by SSS similarity criterion

STATEMENT:

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

Side - Angle - Side Similarity Criterion

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}, \angle \mathrm{~A}=\angle \mathrm{D}
$$

$\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$

Proof: SAS Criterion for Similarity of Triangles

- Given: $\ln \triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$ and $\angle \mathrm{A}=\angle \mathrm{D}$
- To Prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
- Construction: Draw PQ such that $\mathrm{DP}=\mathrm{AB}$ and $\mathrm{DQ}=\mathrm{AC}$

Proof:

In $\triangle A B C$ and $\triangle D P Q, \frac{A B}{D E}=\frac{A C}{D F}, D P=A B$ and $D Q=A C$

Therefore, $\frac{\mathrm{DP}}{\mathrm{DE}}=\frac{\mathrm{DQ}}{\mathrm{DF}} \Rightarrow \frac{\mathrm{DE}}{\mathrm{DP}}=\frac{\mathrm{DF}}{\mathrm{DQ}}$
Subtracting 1 from both sides and taking reciprocal, we get $\frac{\mathrm{DP}}{\mathrm{PE}}=\frac{\mathrm{DQ}}{\mathrm{QF}}$

Thus PQ || EF (By converse of Basic Proportionality Theorem)
$\angle D P Q=\angle E$ and $\angle D Q P=\angle F$
$\triangle A B C \cong \triangle D P Q$ (by SAS congruence criteria)
$\angle B=\angle D P Q$ and $\angle D Q P=\angle C$ (Corresponding parts of congruent triangles)
$\therefore \angle B=\angle E$ and $\angle C=\angle F$
Hence, by AAA similarity criterion, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

SOLVED EXAMPLE

In the adjoining fig., $\mathrm{AD}=3 \mathrm{~cm}, \mathrm{AE}=5 \mathrm{~cm}$, $B D=4 \mathrm{~cm}, C E=4 \mathrm{~cm}, C F=2 \mathrm{~cm}, \mathrm{BF}=2.5 \mathrm{~cm}$, then find the pair of parallel lines and hence the lengths of the same.

Solution:
$\frac{E C}{E A}=\frac{4}{5}$ and
$\frac{C F}{F B}=\frac{2}{2.5}=\frac{4}{5}$
$\Longrightarrow \frac{E C}{E A}=\frac{C F}{F B}$

Therefore by converse of Basic Proportionality Theorem, EF||AB
Also, $\frac{C E}{C A}=\frac{4}{4+5}=\frac{4}{9}$

$$
\frac{C F}{C B}=\frac{2}{2+2.5}=\frac{2}{4.5}=\frac{4}{9}
$$

Therefore, By SAS Similarity

$$
\Delta \mathrm{CFE} \sim \triangle \mathrm{CBA}
$$

$$
\Rightarrow \frac{E F}{A B}=\frac{C E}{C A}
$$

$$
\Rightarrow \frac{E F}{7}=\frac{4}{9}
$$

$$
E F=\frac{28}{9}
$$

$$
\mathrm{AB}=7 \mathrm{~cm}
$$

THANK YOU

