• • • • • • • • • • •

TRIANGLES

MODULE 4

AREAS OF SIMILAR TRIANGLES

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

1

PROOF OF THEOREM FOR AREAS OF SIMILAR TRIANGLES

Consider two triangles, $\triangle ABC$ and $\triangle PQR$

- **Given:** $\triangle ABC \sim \triangle PQR$
- To prove:

 $\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2$

• **Construction**: Draw altitudes AM and PN of the triangles ABC and PQR from vertices A and P respectively

Since $\triangle ABC \sim \triangle PQR$, their corresponding angles are equal. $\angle B = \angle Q$ Also, $\angle M = \angle N = 90^{\circ}$

Therefore $\Delta ABM \sim \Delta PQN$ by AA similarity criterion

$$\frac{AM}{PN} = \frac{AB}{PQ}$$

Since $\Delta ABC \sim \Delta PQR$, their corresponding sides are proportional

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$

(2)

(3)

Hence we can conclude that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

SOLVED EXAMPLE

 ΔABC is right angled at C and CD is perpendicular to AB, prove that $BC^2 \times AD = AC^2 \times BD$

Given, $\triangle ABC$ is right angled at C and CD is perpendicular to AB To prove, $BC^2 \times AD = AC^2 \times BD$ Proof: Consider $\triangle ACD$ and $\triangle DCB$ Let $\angle A = x \Longrightarrow \angle B = 90^{\circ} - x$, as $\triangle ACB$ is right angled In \triangle ADC and \triangle CDB, $\angle ADC = \angle CDB = 90^{\circ}$ $\angle A = \angle DCB = x$ By AA Similarity, $\triangle ACD \sim \triangle DCB$ $\frac{1}{2} \times AD \times CD = AC^2$ $\implies \frac{ar(\Delta ACD)}{ar(\Delta CBD)} = \frac{AC^2}{BC^2} \Longrightarrow$ $\frac{1}{2} \times BD \times CD$ $\frac{AD}{DB} = \frac{AC^2}{BC^2}$ $\Rightarrow BC^2 \times AD = AC^2 \times BD$

SIMILARITY OF TRIANGLES IN A RIGHT TRIANGLE

- Given: $\triangle ABC$ is a right triangle, $\angle ABC = 90^{\circ}$
- To prove:
 - $\Delta ADB \sim \Delta ABC,$
 - $\Delta ABC \sim \Delta BDC$ and
 - $\Delta ADB \sim \Delta BDC$
- Construction: Draw BD perpendicular to hypotenuse AC

Consider $\triangle ABC$ and $\triangle ADB$ $\angle A$ is common and $\angle ADB = \angle ABC = 90^{\circ}$ Therefore $\triangle ABC \sim \triangle ADB$ by AA similarity criterion

Consider $\triangle ABC$ and $\triangle BDC$ $\angle C$ is common and $\angle BDC = \angle ABC = 90^{\circ}$ Therefore $\triangle ABC \sim \triangle BDC$ by AA similarity criterion

If one triangle is similar to another triangle and this second triangle is similar to a third triangle, then the first triangle is similar to the third triangle

 $\Rightarrow \Delta ADB \sim \Delta BDC$

If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

PROOF OF PYTHAGORAS THEOREM USING SIMILARITY

- Given: $\triangle ABC$ is a right triangle, $\angle ABC = 90^{\circ}$
- To prove: $AC^2 = AB^2 + BC^2$
- Construction: Draw BD perpendicular to hypotenuse AC

PYTHAGORAS THEOREM

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given: ΔABC is a right triangle, right-angled at B **To Prove:** $AC^2 = AB^2 + BC^2$ **Construction:** $BD \perp AC$ **Proof**: Since $\Delta ADB \sim \Delta ABC$, their sides are proportional AD AB $\overline{AB} = \overline{AC}$ By cross multiplication, $AD \times AC = AB^2$ (1) -----Since $\Delta BDC \sim \Delta ABC$, their sides are proportional CD BC $\frac{1}{BC} = \frac{1}{AC}$ By cross multiplication, $CD \times AC = BC^2$ _____ (2) Adding (1) and (2) $AD \times AC + CD \times AC = AB^2 + BC^2$ $AC(AD + CD) = AB^{2} + BC^{2}$ $AC \times AC = AB^{2} + BC^{2}$ $AC^2 = AB^2 + BC^2$

SOLVED EXAMPLE

In figure, ΔABC is right angled at B. Side BC is trisected at points D and E, Prove that $8AE^2 = 3AC^2 + 5AD^2$

Given, ΔABC is right angled at B. Side BC is trisected at points D and E

To Prove: $8AE^2 = 3AC^2 + 5AD^2$

Proof:

D and E are the points of trisection of BC. $BD = \frac{1}{3}BC$ and $BE = \frac{2}{3}BC$ ------ (i) In right-angled $\triangle ABD$, Using Pythagoras theorem, $AD^2 = AB^2 + BD^2$ ------ (ii) In $\triangle ABE$, $AE^2 = AB^2 + BE^2$ ------ (iii) In $\triangle ABC$, $AC^2 = AB^2 + BC^2$ ------ (iv)

From (ii) and (iii), we have $AD^2 - AE^2 = BD^2 - BE^2$ $\Rightarrow AD^2 - AE^2 = (\frac{1}{2}BC)^2 - (\frac{2}{2}BC)^2$ $\implies AD^2 - AE^2 = \frac{1}{9}BC^2 - \frac{4}{9}BC^2 = -\frac{3}{9}BC^2$ $\Rightarrow AE^2 - AD^2 = \frac{1}{2}BC^2$ ----- (v) From (iii) and (iv), we have $AC^2 - AE^2 = BC^2 - BE^2$ $= BC^2 - \frac{4}{2}BC^2$ $\Rightarrow AC^2 - AE^2 = \frac{5}{9}BC^2$ ----- (vi) From (v) and (vi), we get $AC^2 - AE^2 = \frac{5}{2} (AE^2 - AD^2)$ $\Rightarrow 3AC^2 - 3AE^2 = 5AE^2 - 5AD^2$ \implies 8 $AE^2 = 5AD^2 + 3AC^2$

THANK YOU