

CONVERSE OF PYTHAGORAS THEOREM

In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

PROOF OF CONVERSE OF PYTHAGORAS THEOREM

- Given: A triangle ABC in which $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
- To Prove: $\angle B=90^{\circ}$
- Construction: $\triangle P Q R$ right angled at Q such that $P Q=A B$ and $Q R=B C$

Consider \triangle PQR
$P R^{2}=P Q^{2}+Q R^{2}\left(\right.$ By Pythagoras Theorem as $\left.\angle Q=90^{\circ}\right)$
By construction $P Q=A B$ and $Q R=B C$
$\Rightarrow P R^{2}=A B^{2}+B C^{2}$
We are given that $A C^{2}=A B^{2}+B C^{2}$
From (1) and (2)
$P R=A C$
Also in $\triangle A B C$ and $\triangle P Q R$,
$A B=P Q$ (By construction)

$\mathrm{BC}=\mathrm{QR}$ (By construction)
$\Rightarrow \triangle A B C \cong \triangle P Q R$ (By SSS congruence condition)
$\Rightarrow \angle B=\angle Q=90^{\circ}$ (Corresponding parts of congruent triangles)

SOLVED EXAMPLE

Consider a triangle whose sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Is this a right triangle or not?

Solution:
We are given that,
$A B=5 \mathrm{~cm}$
$B C=12 \mathrm{~cm}$
$A C=13 \mathrm{~cm}$
$A C^{2}=13^{2}=169$
$A B^{2}+B C^{2}=5^{2}+12^{2}=25+144=169$

$\Rightarrow A C^{2}=A B^{2}+B C^{2}$
Therefore, by converse of Pythagoras theorem the given triangle $A B C$ is a right triangle.

SUMMARY

Two polygons of the same number of sides are similar, if

- their corresponding angles are equal and
- their corresponding sides are in the same ratio (i.e., proportion)

Basic Proportionality theorem
If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio

Converse of Basic Proportionality theorem
If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

SOLVED EXAMPLE

In fig, if $P Q R S$ is a parallelogram and $A B \| P S$, then prove that $O C \| S R$

Solution:
In $\triangle A B O$ and $\triangle P S O$,
$\angle A O B=\angle P O S$ (common angle)
$\angle A B O=\angle P S O$ (Since $\mathrm{AB} \| \mathrm{PS}$, corresponding angles are equal)
$\Rightarrow \triangle A B O \sim \triangle P S O$ by AA similarity criterion

$\frac{O P}{O A}=\frac{P S}{A B}$ (Corresponding sides of similar triangles are in the same ratio)
$\frac{O P}{O A}=\frac{Q R}{A B}$ (Since, PQRS is a parallelogram, $\mathrm{QR}=\mathrm{PS}$)

Since, $P Q R S$ is a parallelogram, $Q R \| P S$ and we are given that $A B|\mid P S$ $\Rightarrow Q R \| A B$
$\Rightarrow \angle A B C=\angle Q R C$ (corresponding angles are equal)
$\Rightarrow \angle A C B=\angle Q C R$ (Common)
$\Rightarrow \triangle A B C \sim \triangle Q R C$ by AA similarity criterion

$\frac{Q R}{A B}=\frac{Q C}{A C}$ (Corresponding sides of similar triangles are in the same ratio)
From (1) and (2)
$\frac{O P}{O A}=\frac{Q C}{A C}$
$\Rightarrow \mathrm{PQ} \| \mathrm{OC}$ (By converse of Basic Proportionality Theorem)
$\Rightarrow S R \| O C$ (Since PQRS is a parallelogram, $P Q \| S R$)

SIMILARITY CRITERIA OF TRIANGLES

- If in two triangles, two angles of one triangle are respectively equal to the two angles of the other triangle, then the two triangles are similar (AA similarity criterion).
- If in two triangles, corresponding sides are in the same ratio, then their corresponding angles are equal and hence the triangles are similar (SSS similarity criterion).
- If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are in the same ratio (proportional), then the triangles are similar (SAS similarity criterion).
- Note: If in two right triangles, hypotenuse and one side of one triangle are proportional to the hypotenuse and one side of the other triangle, then the two triangles are similar. This may be referred to as the RHS Similarity Criterion.

SOLVED EXAMPLE

In $\triangle A B C, A B=B C$ and D is a point on side $A C$, such that $B C^{2}=A C \times C D$. Prove that $B D=B C$.

Given:

$A B=B C$ in $\triangle A B C$ and D is a point on $B C$.
To Prove: $B D=B C$
Proof: $B C^{2}=\mathrm{AC} \times \mathrm{CD}$
$\Rightarrow \frac{B C}{A C}=\frac{D C}{B C}$
In $\triangle A B C$ and $\triangle B D C$
$\Rightarrow \frac{B C}{C A}=\frac{D C}{C B}$ and $\angle C=\angle C$ [Common]
$\triangle A D C \sim \triangle B D C$ [SAS Similarity]

$\Longrightarrow \frac{A B}{B D}=\frac{A C}{B C} \Longrightarrow \frac{A C}{B D}=\frac{A C}{B C}$ [because $\mathrm{AB}=\mathrm{AC}$]
$\Rightarrow B D=B C$

- AREAS OF SIMILAR TRIANGLES

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides

- PYTHAGORAS THEOREM

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides

- CONVERSE OF PYTHAGORAS THEOREM

If in a triangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

SOLVED EXAMPLE

$\triangle A B C$ and $\triangle P Q R$ are two isosceles right triangles such that $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle P Q R)=$ $25: 18$. The length of the hypotenuse of $\triangle A B C$ is 30 cm . What is the perimeter of $\triangle P Q R$?

Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ be the given two isosceles right triangles where $\angle B=90^{\circ}$ and $\angle Q=90^{\circ}$.

$$
\angle B=\angle Q=90^{\circ}
$$

$$
\angle A=\angle P=45^{\circ}
$$

$$
\angle C=\angle R=45^{\circ}
$$

Therefore $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [By AAA Similarity criterion]

The ratios of the areas of similar triangles is equal to the ratio of the squares of their corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A C}{P R}\right)^{2} \\
& \frac{25}{18}=\frac{30 \mathrm{~cm}^{2}}{P R^{2}}
\end{aligned}
$$

$P R^{2}=\left(\frac{900 * 18}{25}\right) \mathrm{cm}^{2}$
Applying Pythagoras theorem to the right triangle PQR,
$P R^{2}=P Q^{2}+Q R^{2}$
$\Rightarrow P Q^{2}+P Q^{2}=648 \mathrm{~cm}^{2}\left[\triangle \mathrm{PQR}\right.$ is isosceles where $\angle Q=90^{\circ}$
$\Rightarrow 2 P Q^{2}=648 \mathrm{~cm}^{2}$
$\Rightarrow P Q^{2}=324 \mathrm{~cm}^{2}$
$\Rightarrow P Q=18 \mathrm{~cm}$
$\Rightarrow Q R=18 \mathrm{~cm}$
Perimeter of $\triangle P Q R=P Q+Q R+P R=(18+18+18 \sqrt{2}) \mathrm{cm}=(36+18 \sqrt{2}) \mathrm{cm}$
$=18(2+\sqrt{ } 2) \mathrm{cm}$

