TRIANGLES - 1/5

1. A polygon is any simple closed curve made up of only line segments.
2. Congruent figures: Two figures are said to be congruent if they have same shape and same size.
3. Similar figures: Two figures having same shape and not necessarily the same size are called similar figures.

* Two polygons with the same number of sides are similar if
i. Their corresponding angles are equal, and
ii. Their corresponding sides are in the same ratio (or proportion)

4. Congruence is a particular case of similarity. In both the cases, three angles of one triangle are equal to the three corresponding angles of the other triangle. But in congruent triangles, the corresponding sides are equal while in similar triangles the corresponding sides are proportional.

* If $\triangle A B C$ and $\triangle P Q R$ are similar, then it can be represented as $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

5. Two triangles are similar, if
i. Their corresponding angles are equal, and
ii. Their corresponding sides are in the same ratio (or proportion)
6. If the corresponding angles of the two triangles are equal, they are called equiangular triangles.
7. The ratio of any two corresponding sides in two equiangular triangles is always the same.
8. Basic Proportionality Theorem (Thales Theorem):

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Given: A triangle $A B C$ in which a line parallel to side $B C$ intersects other two sides $A B$ and $A C$ at D and E respectively.

To prove: $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Proof:Let us join $B E$ and $C D$ and then draw $D M \perp A C$ and $E N \perp A B$.

$$
\begin{gathered}
\operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times \text { base } \times \text { height }=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN} \\
\text { Similarly, } \operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{2} \times \mathrm{DB} \times \mathrm{EN} \\
\operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM} \\
\operatorname{ar}(\triangle \mathrm{DEC})=\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}}{\frac{1}{2} \times \mathrm{DB} \times \mathrm{EN}}=\frac{\mathrm{AD}}{\mathrm{DB}} \\
& \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{DEC})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}}=\frac{\mathrm{AE}}{\mathrm{EC}}
\end{aligned}
$$

Since, $\triangle B D E$ and $\triangle D E C$ are on the same base $D E$ and between the same parallels $B C$ and $D E$,

$$
\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{DEC})
$$

From the above three results, we get

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

Solved Example: In $\triangle A B C$, if $D E \| B C, A D=x, D B=x-2$, and $E C=x-1$ then find the lengths of the sides $A B$ and $A C$.

Solution $\quad \ln \triangle A B C$, we have $D E|\mid B C$.
$B y$ Thales theorem, we have $\frac{A D}{D B}=\frac{A E}{E C}$
Therefore, $\frac{x}{x-2}=\frac{x+2}{x-1}$
This gives $x(x-1)=(x-2)(x+2)$
Hence, $x^{2}-x=x^{2}-4$
So, $x=4$

When $x=4, A D=4, D B=x-2=2, A E=x+2=6, E C=x-1=3$
Hence, $A B=A D+D B=4+2=6, A C=A E+E C=6+3=9$
Therefore, $A B=6, A C=9$.

