TRIANGLES - MODULE 2/5

Converse of Basic Proportionality Theorem:

Statement: If a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

Given: $A \triangle A B C$ and a line segment intersecting $A B$ in D and $A C$ in E, such that $\frac{A D}{D B}=\frac{A E}{E C}$.
To Prove: DE || BC.
Construction: Draw a line segment DF such that DF || BC
Proof: Assume DE not parallel to $B C$. Then, there must be another line through D parallel to

$B C$.

Let DF || BC. Then, by Basic Proportionality Theorem, we've

$$
\begin{equation*}
\frac{A D}{D B}=\frac{A F}{F C} \tag{i}
\end{equation*}
$$

But, since $\quad \frac{A D}{D B}=\frac{A E}{E C}$
(i)

From (i) and (ii), we have

$$
\begin{aligned}
& \frac{\mathrm{AE}}{\mathrm{EC}}=\frac{\mathrm{AF}}{\mathrm{FC}} \\
& \frac{\mathrm{AE}}{\mathrm{EC}}+1=\frac{\mathrm{AF}}{\mathrm{FC}}+1 \\
& \frac{\mathrm{AE}+\mathrm{EC}}{\mathrm{EC}}=\frac{\mathrm{AF}+\mathrm{FC}}{\mathrm{FC}} \\
& \frac{\mathrm{AC}}{\mathrm{EC}}=\frac{\mathrm{AC}}{\mathrm{FC}} \\
& \mathrm{FC}=\mathrm{EC}
\end{aligned}
$$

Therefore, F coincides with E
Thus DE || BC
*** Note: This proof is not for examination point of view.

Solved Example:

A and B are respectively the points on the sides $P Q$ and $P R$ of $\triangle P Q R$ such that $P Q=12.5 \mathrm{~cm}$, $P A=5 \mathrm{~cm}, B R=6 \mathrm{~cm}$ and $P B=4 \mathrm{~cm}$. Is $A B|\mid Q R$?

Solution:

By converse of Basic Proportionality theorem, $A B|\mid Q R$ if $A B$ divides $P Q$ and $P R$ in the same ratio. i.e, if $\frac{P A}{A Q}=\frac{P B}{B R}$
$Q A=Q P-P A=12.5 \mathrm{~cm}-5 \mathrm{~cm}=7.5 \mathrm{~cm}$

$$
\begin{gathered}
\frac{P A}{A Q}=\frac{5}{7.5}=\frac{2}{3} \\
\frac{P B}{B R}=\frac{4}{6}=\frac{2}{3}
\end{gathered}
$$

Therefore, we get $\frac{P A}{A Q}=\frac{P B}{B R}$. This implies $A B \| Q R$

Criteria for Similarity of Triangles

We have already stated that two triangles are similar if
(i) their corresponding angles are equal.
(ii) their corresponding sides are in the same ratio(proportional).

So, in $\triangle A B C$ and $\triangle D E F$, if

- $\angle A=\angle D$
- $\angle B=\angle E$
- $\angle C=\angle F$ and
- $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
then two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar.
i.e., $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.

AAA Similarity: If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportional) and hence the two triangles are similar.
Corollary: (AA Similarity) If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.

