TRIANGLES - MODULE 3/5

Criteria for Similarity of Triangles:

1. Angle - Angle - Angle Similarity Criterion

If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar

Corollary: Angle - Angle Similarity Criterion
If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.
2. Side - Side - Side Similarity Criterion:

If in two triangles, sides of one triangle are proportional to (i.e., in the same ratio of) the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar.

Solved Example based on SSS similarity criterion:

Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of $\triangle P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

Solution:

Given:

1) $\mathrm{AB} / \mathrm{PQ}=\mathrm{BC} / \mathrm{QR}=\mathrm{AD} / \mathrm{PM}$
2) $A D$ and $P M$ are the medians of the triangles $A B C$ and $P Q R$

To prove: $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
Proof:
Since $A D$ and $P M$ are the medians of $\triangle A B C$ and $\Delta P Q R, B D=B C / 2$ and $Q M=Q R / 2$
Also it is given that $\mathrm{AB} / \mathrm{PQ}=\mathrm{BC} / \mathrm{QR}=\mathrm{AD} / \mathrm{PM}$
$\Rightarrow \frac{A B}{P Q}=\frac{2 B D}{2 Q M}=\frac{A D}{P M}$
$\Rightarrow \frac{A B}{P Q}=\frac{B D}{Q M}=\frac{A D}{P M}$
Therefore by SSS congruence condition, $\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$

3. Side - Angle - Side Similarity Criterion:

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

Solved Example based on SAS similarity criterion:

The given figure shows an isosceles triangles $P G R$ in which $P Q=P R$. S is a point on $P Q$. Also, $Q R^{2}=P Q \times Q S$, and $S R=2.4 \mathrm{~cm}$. What is the length of $Q R$?

Solution:

It is given that $Q R^{2}=P Q \times Q S$. Therefore, $Q R^{2}=P R \times Q S(A s P Q=P R)$
$\Rightarrow \frac{\mathrm{QR}}{\mathrm{PR}}=\frac{\mathrm{QS}}{\mathrm{QR}}$
$\Rightarrow \frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{PR}}{\mathrm{QR}}$
Also, $\angle \mathrm{R}=\angle \mathrm{Q}$ (As PQ = PR)
Therefore, $\triangle Q R P \sim \Delta S Q R$ (by SAS similarity)
$\Rightarrow \frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{PR}}{\mathrm{QR}}$ (corresponding sides of similar triangles)
$\Rightarrow \frac{P R}{Q R}=\frac{P Q}{S R} \Rightarrow \frac{1}{Q R}=\frac{1}{S R}(A s P Q=P R)$
$\Rightarrow Q R=S R$
It is given that $S R=2.4 \mathrm{~cm}$. Thus, the length of $Q R$ is also 2.4 cm

