TRIANGLES – MODULE 4/5

Areas of Similar Triangles:

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Proof:

Consider two triangles, $\triangle ABC$ and $\triangle PQR$

Given: $\Delta ABC \sim \Delta PQR$

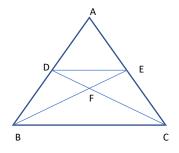
To prove:

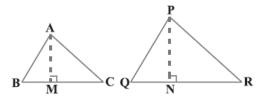
$$\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{AC}{PR}\right)^2$$

Construction: Draw altitudes AM and PN of the triangles ABC and PQR from vertices A and P respectively

Solved example

In the given figure, DE || BC and AD:DB = 5:4, find $\frac{ar(\Delta DFE)}{ar(\Delta CFB)}$





2

Solution:

Consider $\triangle ADE$ and $\triangle ABC$ $\angle A$ is common $\angle ADE = \angle ABC$ (Since DE || BC and corresponding angles are equal) $\Rightarrow \triangle ADE \sim \triangle ABC$ (By AA similarity criterion) $\Rightarrow \frac{AD}{AB} = \frac{DE}{BC}$ (Corresponding parts of similar triangles)------ (1)

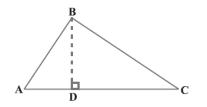
Consider ΔDFE and ΔCFB $\angle EDF = \angle FCB$ and $\angle DEF = \angle FBC$ (Since DE || BC and alternate interior angles are equal) $\Rightarrow \Delta DFE \sim \Delta CFB$ (By AA similarity criterion)

Therefore, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides

From (1), $\frac{ar(\Delta DFE)}{ar(\Delta CFB)} = \left(\frac{DE}{BC}\right)^2 = \left(\frac{AD}{AB}\right)^2$ ------ (2) $\frac{AD}{DB} = \frac{5}{4} \Longrightarrow \frac{DB}{AD} = \frac{4}{5}$ $\Rightarrow \frac{DB}{AD} + 1 = \frac{DB + AD}{AD} = \frac{AB}{AD} \Rightarrow \frac{AD}{AB} = \frac{1}{\frac{4}{5} + 1} = \frac{5}{9}$ From (2) $\Rightarrow \frac{ar(\Delta DFE)}{ar(\Delta CFB)} = \left(\frac{5}{9}\right)^2 = \frac{25}{81}$

Similarity of triangles in a right triangle:

If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.



Given: $\triangle ABC$ is a right triangle, $\angle ABC = 90^{\circ}$

To prove: $\triangle ADB \sim \triangle ABC$, $\triangle ABC \sim \triangle BDC$ and $\triangle ADB \sim \triangle BDC$

Construction: Draw BD perpendicular to hypotenuse AC

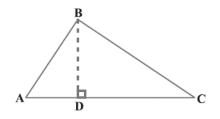
Consider $\triangle ABC$ and $\triangle ADB$ $\angle A$ is common and $\angle ADB = \angle ABC = 90^{\circ}$ Therefore $\triangle ABC \sim \triangle ADB$ by AA similarity criterion

Consider $\triangle ABC$ and $\triangle BDC$ $\angle C$ is common and $\angle BDC = \angle ABC = 90^{\circ}$ Therefore $\triangle ABC \sim \triangle BDC$ by AA similarity criterion If one triangle is similar to another triangle and this second triangle is similar to a third triangle, then the first triangle is similar to the third triangle $\Rightarrow \Delta ADB \sim \Delta BDC$

Pythagoras Theorem:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

 $AC^2 = AB^2 + BC^2$



Proof:

Given: $\triangle ABC$ is a right triangle, $\angle ABC = 90^{\circ}$

To prove: $AC^2 = AB^2 + BC^2$

Construction: Draw BD perpendicular to hypotenuse AC

Since $\triangle ADB \sim \triangle ABC$, their sides are proportional $\frac{AD}{AB} = \frac{AB}{AC}$ By cross multiplication, $AD \times AC = AB^2$ -------(1) Since $\triangle BDC \sim \triangle ABC$, their sides are proportional $\frac{CD}{BC} = \frac{BC}{AC}$ By cross multiplication, $CD \times AC = BC^2$ ------(2) Adding (1) and (2) $AD \times AC + CD \times AC = AB^2 + BC^2$ $AC (AD + CD) = AB^2 + BC^2$ $AC \times AC = AB^2 + BC^2$