TRIANGLES - MODULE 5/5

CONVERSE OF PYTHAGORAS THEOREM:

In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

Given: A triangle ABC in which $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
To Prove: $\angle \mathrm{B}=90^{\circ}$
Construction: $\triangle \mathrm{PQR}$ right angled at Q such that $\mathrm{PQ}=\mathrm{AB}$ and $\mathrm{QR}=\mathrm{BC}$

Proof:

Consider $\triangle \mathrm{PQR}$
$\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}\left(\right.$ By Pythagoras Theorem as $\left.\angle \mathrm{Q}=90^{\circ}\right)$
By construction $\mathrm{PQ}=\mathrm{AB}$ and $\mathrm{QR}=\mathrm{BC}$
$\Rightarrow \mathrm{PR}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
We are given that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
From (1) and (2)

$\mathrm{PR}=\mathrm{AC}$
Also in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\mathrm{AB}=\mathrm{PQ}$ (By construction)
$\mathrm{BC}=\mathrm{QR}$ (By construction)
$\Rightarrow \triangle A B C \cong \triangle P Q R$ (By SSS congruence condition)
$\Rightarrow \angle B=\angle Q=90^{\circ}$ (Corresponding parts of congruent triangles)

SOLVED EXAMPLES

1) In the given figure, $\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{AD}: \mathrm{DB}=5: 4$, find $\frac{\operatorname{ar}(\triangle \mathrm{DFE})}{\operatorname{ar}(\triangle \mathrm{CFB})}$

Solution:

Consider $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{A}$ is common
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$ (Since $\mathrm{DE}|\mid \mathrm{BC}$ and corresponding angles are equal)
$\Rightarrow \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ (By AA similarity criterion)
$\Rightarrow \frac{A D}{A B}=\frac{D E}{B C}$ (Corresponding parts of similar triangles)

Consider $\triangle \mathrm{DFE}$ and $\triangle \mathrm{CFB}$
$\angle \mathrm{EDF}=\angle \mathrm{FCB}$ and $\angle \mathrm{DEF}=\angle \mathrm{FBC}$ (Since $\mathrm{DE} \| \mathrm{BC}$ and alternate interior angles are equal)
$\Rightarrow \Delta \mathrm{DFE} \sim \Delta \mathrm{CFB}$ (By AA similarity criterion)

Therefore, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides

From (1), $\frac{\operatorname{ar}(\triangle \mathrm{DFE})}{\operatorname{ar}(\triangle \mathrm{CFB})}=\left(\frac{\mathrm{DE}}{\mathrm{BC}}\right)^{2}=\left(\frac{\mathrm{AD}}{\mathrm{AB}}\right)^{2}$

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{5}{4} \Rightarrow \frac{\mathrm{DB}}{\mathrm{AD}}=\frac{4}{5}
$$

$$
\Rightarrow \frac{\mathrm{DB}}{\mathrm{AD}}+1=\frac{\mathrm{DB}+\mathrm{AD}}{\mathrm{AD}}=\frac{\mathrm{AB}}{\mathrm{AD}} \Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{1}{\frac{4}{5}+1}=\frac{5}{9}
$$

From (2)

$$
\Rightarrow \frac{\operatorname{ar}(\Delta \mathrm{DFE})}{\operatorname{ar}(\Delta \mathrm{CFB})}=\left(\frac{5}{9}\right)^{2}=\frac{25}{81}
$$

2) In given figure, $\mathrm{EB} \perp \mathrm{AC}, \mathrm{BG} \perp \mathrm{AE}$ and $\mathrm{CF} \perp \mathrm{AE}$. Prove that:
a. $\triangle \mathrm{ABG} \sim \triangle \mathrm{DCB}$
b. $\quad \frac{B C}{B D}=\frac{B E}{B A}$

Solution:

Given: $\mathrm{EB} \perp \mathrm{AC}, \mathrm{BG} \perp \mathrm{AE}$ and $\mathrm{CF} \perp \mathrm{AE}$.
To prove:
a. $\quad \triangle \mathrm{ABG} \sim \triangle \mathrm{DCB}$
b. $\frac{B C}{B D}=\frac{B E}{B A}$

Proof:
In $\triangle \mathrm{ABG}$ and $\triangle \mathrm{DCB}$,
$\angle 2=\angle 5=90^{\circ}$
$\angle 6=\angle 4$ (corresponding angles)
\therefore By AA similarity, $\triangle \mathrm{ABG} \sim \Delta \mathrm{DCB}$
$\therefore \angle 1=\angle 3$ (Corresponding angles of similar triangles are equal)

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{DBC}$, since
$\angle 1=\angle 3$ and
$\angle \mathrm{ABE}=\angle 5=90^{\circ}$
By AA similarity, $\triangle \mathrm{ABE} \sim \triangle \mathrm{DBC}$
$\frac{B C}{B D}=\frac{B E}{B A}$ (Corresponding sides of similar triangles are proportional)

