TRIANGLES – MODULE 5/5

CONVERSE OF PYTHAGORAS THEOREM:

In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

Given: A triangle ABC in which $AC^2 = AB^2 + BC^2$ To Prove: $\angle B = 90^{\circ}$ Construction: \triangle PQR right angled at Q such that PQ = AB and QR = BC **Proof:** Consider \triangle POR $PR^2 = PQ^2 + QR^2$ (By Pythagoras Theorem as $\angle Q = 90^\circ$) By construction PQ = AB and QR = BC \implies PR² = AB² + BC² ----- (1) We are given that $AC^2 = AB^2 + BC^2$ ----- (2) From (1) and (2)PR = ACAlso in \triangle ABC and \triangle PQR, AB = PQ (By construction) BC = QR (By construction) $\Rightarrow \Delta ABC \cong \Delta PQR$ (By SSS congruence condition) $\Rightarrow \angle B = \angle Q = 90^{\circ}$ (Corresponding parts of congruent triangles)

SOLVED EXAMPLES

1) In the given figure, DE || BC and AD:DB = 5:4, find $\frac{ar(\Delta DFE)}{ar(\Delta CFB)}$

Solution:

Consider ΔADE and ΔABC

 $\angle A$ is common

 $\angle ADE = \angle ABC$ (Since DE || BC and corresponding angles are equal) $\Rightarrow \triangle ADE \sim \triangle ABC$ (By AA similarity criterion)

$$\Rightarrow \frac{AD}{AB} = \frac{DE}{BC}$$
 (Corresponding parts of similar triangles) ------ (1)

Consider ΔDFE and ΔCFB $\angle EDF = \angle FCB$ and $\angle DEF = \angle FBC$ (Since DE || BC and alternate interior angles are equal) $\Rightarrow \Delta DFE \sim \Delta CFB$ (By AA similarity criterion)

Therefore, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides

From (1),
$$\frac{ar(\Delta DFE)}{ar(\Delta CFB)} = \left(\frac{DE}{BC}\right)^2 = \left(\frac{AD}{AB}\right)^2$$
(2)

$$\frac{AD}{DB} = \frac{5}{4} \Rightarrow \frac{DB}{AD} = \frac{4}{5}$$

$$\Rightarrow \frac{DB}{AD} + 1 = \frac{DB + AD}{AD} = \frac{AB}{AD} \Rightarrow \frac{AD}{AB} = \frac{1}{5+1} = \frac{5}{9}$$
From (2)

$$\Rightarrow \frac{ar(\Delta DFB)}{ar(\Delta CFB)} = \left(\frac{5}{9}\right)^2 = \frac{25}{81}$$
2) In given figure, EB $\perp AC$, BG $\perp AE$ and CF $\perp AE$. Prove that:
a. $\Delta ABG \sim \Delta DCB$
b. $\frac{BC}{BD} = \frac{BE}{BA}$
Solution:
Solution:

$$\frac{C}{2} = \frac{C}{2} = \frac$$

ZABE = 25 = 90 By AA similarity, ΔABE ~ ΔDBC $\frac{BC}{BD} = \frac{BE}{BA}$ (Corresponding sides of similar triangles are proportional)