ATOMIC ENERGY CENTRAL SCHOOL

Class- 7

Subject- MATHEMATICS

CHAPTER - 5

LINES AND ANGLES (HAND OUT)

Module- $\frac{2}{3}$

INTRODUCTION:

In the previous module we learnt about the angle. In this module we learn more about the angles.

ADJACENT ANGLES -

A pair of angles are called adjacent angles if-
(a) they have a common vertex.
(b) they have a common arm.
(c) the non-common arms are on either side of the common arm.

$\llcorner\mathrm{ADB}$ and $\llcorner\mathrm{BDC}$ are adjacent angles, because the common vertex is D ,common arm is BD and the non-common arms AD and CD lie on opposite sides of the common arm.
$\llcorner\mathrm{ADB}$ and $\llcorner\mathrm{ADC}$ are not adjacentangles, because the common vertex is D ,common arm is AD and the non-common arms BD and CD lie on same sides of the common arm AD .

LINEAR PAIR ANGLES -

A pair of adjacent angles are said to be linear pair, if the non- common arms form opposite rays.
Example-1 A

\llcorner ACBand \llcorner ACD are linear pair, as the non-common arms form opposite rays.
Linear pair angles are supplementary. (Their sum is 180°)

Example-2

$\llcorner P S Q$ and \llcorner QSR are not linear pair, as the non-common arms do not form opposite rays.
Example-3

$\left\llcorner A C B\right.$ and $L A C D$ are linear pair, $L A C B=(2 x+8)^{0}$ and $L A C D=(x-2)^{0}$. Find x
$\left\llcorner\mathrm{ACB}+\mathrm{ACD}=180^{\circ}\right.$ (Linear pair)
Or, $2 \mathrm{x}+8^{0}+\mathrm{x}-2=180^{0}$

$$
\text { Or, } 3 x+6^{\circ}=180^{\circ}
$$

Or, $3 \mathrm{x}=180^{0}-6^{0}=174^{0}$
Or, $x=\frac{174}{3}=58^{0}$
$\left\llcorner\mathrm{ACB}=2 \mathrm{x}+8=2 \mathrm{x} 58+8=116+8=124^{0}\right.$
$\left\llcorner\mathrm{ACD}=\mathrm{x}-2=58-2=56^{0}\right.$

VERTICALLY OPPOSITE ANGLES -

If two line segments or lines intersect with each other, then a pair of angles are said to be vertically opposite angles, if they have a common vertex and no common arm.

234

$\llcorner 1$ and $\llcorner 3 .\llcorner 2$ and $\llcorner 4$ are vertically opposite angles.

If two lines intersect with each other, then the vertically opposite angles are equal.so, $\llcorner 1=\llcorner 3$ and $\llcorner 2$ $=\llcorner 4$

Proof- $\left\llcorner 1+\left\llcorner 4=180^{\circ} \quad\right.\right.$ (linear pair)

$$
\begin{equation*}
\text { Or, }\left\llcorner 1=180^{\circ}-\llcorner 4\right. \tag{i}
\end{equation*}
$$

$\left\llcorner 4+\left\llcorner 3=180^{\circ} \quad\right.\right.$ (linear pair)
Or, $\left\llcorner 3=180^{\circ}-\llcorner 4\right.$ (ii)
By (i) and (ii)
$\llcorner 1=\llcorner 3$
Similarly $\llcorner 2=\llcorner 4$
Example-1.

If $L A O C=30^{\circ}$ find the other angles.
LAOB $=\llcorner C O D$ (Vertically opposite angles)
$30^{\circ}=\llcorner\mathrm{COD}$
$\left\llcorner\mathrm{AOC}+\left\llcorner\mathrm{AOB}=180^{\circ} \quad\right.\right.$ (Linear pair)
$\angle \mathrm{AOC}+30^{\circ}=180^{\circ}$
$\left\llcorner\mathrm{AOC}=180^{\circ}-30^{\circ}=50^{\circ}\right.$
LAOC = \llcorner BOD (Vertically opposite angles)
$50^{\circ}=\llcorner\mathrm{BOD}$
Example2-

If $\angle A O C=68^{\circ}$ and $\angle B O D=70^{\circ}$, then find $\angle C O D$.
$\left\llcorner\mathrm{AOC}+\left\llcorner\mathrm{COD}+\left\llcorner\mathrm{BOD}=180^{\circ}\right.\right.\right.$ (Straight angle)

$$
68^{0}+\left\llcorner\mathrm{COD}+70^{\circ}=180^{\circ}\right.
$$

$\left\llcorner\mathrm{COD}+138^{0}=180^{\circ}\right.$
$\left\llcorner\mathrm{COD}=180^{\circ}-138^{\circ}=42^{\circ}\right.$

What we have learnt -

(a) Adjacent angles- A pair of angles having a common vertex, a common arm and non-common arms lie on opposite sides of common arm.
(b) Linear pair- A pair of adjacent angles in which the non-common arms form opposite rays.
(c) Vertically opposite angles - If two line segments or lines intersect with each other, then a pair of angles are said to be vertically opposite angles, if they have a common vertex and no common arm.

ASSIGNMENTS -

Q1.Name all the adjacent angles-

Q2Fill in the blanks-

(a) The measure of a linear pair angles is \qquad
(b) An adjacent pair of angles have a common \qquad and a common \qquad
(c) In a linear pair angles, the non-common arms form opposite --------.
(d)One of the angles of a linear pair is 45°, and then the measure of other angle is \qquad
(e) A ---------- is common in vertically opposite angles.

Q3.If $(5 x-1)^{0}$ and $(5 x-19)^{0}$ form a linear pair, then find the value of x.
Q4.In the fig. BO is perpendicular to $C D$, thenname-
(i)two linear pairs. (ii) two pairs of vertically opposite angles (iii) three pairs of adjacent angles
(iv) one pair of complementary angles (vi)one pair of supplementary angles.

E

Q5.Look at the following figures and fill in the blanks -
(i)

$\llcorner\mathrm{x}=$
(ii)

$\llcorner\mathrm{p}=--------------$
(iii)

\qquad
(IV)

Supplement of $\llcorner\mathrm{POQ}=$

