CHAPTER - 5

LINES AND ANGLES

$$
\begin{gathered}
\text { Class- } 7 \\
\text { Module- } \frac{2}{3}
\end{gathered}
$$

INTRODUCTION:

- In the previous module we learnt about the angle. In this module we learn more about the angles. *ADJACENT ANGLES -
* A pair of angles are called adjacent angles if-

(a) they have a common

vertex.
(b) they have a common arm. (c) the non-common arms are on either side of the common arm.

$\llcorner A D B$ and $\angle B D C$ are adjacent angles, because the common vertex is D ,common arm is BD and the non-common arms AD and CD lie on opposite sides of the common arm BD.

LADB and $L A D C$ are not

adjacent angles, because the common vertex is D,common arm is AD and the noncommon arms BD and CD lie on same sides of the common arm.

LINEAR PAIR ANGLES -

*A pair of adjacent angles are said to be linear pair, if the non- common arms form opposite rays.

Example-1

* $\angle A C B$ and $\angle A C D$ are linear pair, as the non-common arms form opposite rays.
* Linear pair angles are supplementary. (Their sum is 180°)

Example-2

\llcorner PSQ and \llcorner QSR are not linear pair, as the non-common arms do not form opposite rays.

Example -3.In the fig. $L A C B$ and $L A C D$ are

 linear pair, $L A C B=2 x+8$ and $L A C D=x-2$.Find x .
*

$\angle A C B+L A C D=180^{\circ}$

(Linear pair)

* Or, $2 \mathrm{x}+8^{\circ}+\mathrm{x}-2=180^{\circ}$
* Or, $3 x+6^{\circ}=180^{\circ}$
* Or, $3 x=180^{\circ}-6^{\circ}=174^{\circ}$

Or, $x=\frac{174}{3}=58^{\circ}$

* $L A C B=2 x+8=2 \times 58+8$
$=116+8=124^{\circ}$
* $L A C D=x-2=58-2$
$=56^{\circ}$

VERTICALLY OPPOSITE ANGLES -

* If two line segments or lines intersect with each other, then a pair of angles are said to be vertically opposite angles, if they have a common vertex and no common arms.

$\llcorner 1$ and $L 3$. $\llcorner 2$ and $\llcorner 4$ are vertically opposite angles

If two lines intersect with each other, then the vertically opposite angles are equal. so, $\llcorner 1=\llcorner 3$ and $\llcorner 2=\llcorner 4$

Proof- $L 1+L 4=180^{\circ} \quad$ (linear pair)

$$
o r, L 1=180^{\circ}-L 4 \quad \text { (i) }
$$

* or, $L 4+\left\llcorner 3=180^{\circ}\right.$ (linear pair)
* or, $\left\llcorner 3=180^{\circ}-\llcorner 4\right.$ (ii)
* By (i) and (ii)
* \quad L $1=\llcorner 3$
*

Similarly $\llcorner 2=\llcorner 4$

Example-1

If in the fig. $\angle A O C=30^{\circ}$ find the other

 angles.

LAOB = LCOD (Vertically opposite

 angles)* $30^{\circ}=\angle C O D$
* $\angle A O C+L A O B=180^{\circ}$ (Linear pair)
* $\mathrm{LAOC}+30^{\circ}=180^{\circ}$
* $\angle A O C=180^{\circ}-30^{\circ}=50^{\circ}$
* $\angle A O C=\llcorner B O D$ (Vertically opposite angles)
* $50^{\circ}=\llcorner B O D$

Example2-If in the fig. $L A O C=68^{\circ}$ and $\angle B O D=70^{\circ}$, then find $\angle C O D$.

$$
\begin{aligned}
& \angle A O C+\angle C O D+\angle B O D=180^{\circ} \\
& \text { (Straight angle) } \\
& * \quad 68^{\circ}+\angle C O D+70^{\circ}=180^{\circ} \\
& * \quad L C O D+138^{\circ}=180^{\circ} \\
& * \quad L C O D=180^{\circ}-138^{\circ}=42^{\circ}
\end{aligned}
$$

What we have learnt -

(a) Adjacent angles- A pair of angles
having a common vertex, a common arm and non-common arms lie on opposite sides of common arm.

* (b) Linear pair- A pair of adjacent angles in which the non-common arms form opposite rays.

(c) Vertically opposite angles -

 If two line segments or lines intersect with each other, then a pair of angles are said to be vertically opposite angles, if they have a common vertex and no common arm.
ASSIGNMENTS -

Q1.Name all the adjacent angles-

Q2Fill in the blanks-

(a) The measure of a linear pair angles is ----.
(b) An adjacent pair of angles have a common ------------- and common --------.

* (c) In a linear pair angles ,the non-common arms form opposite
* (d)One of the angles of a linear pair is 45° ,then the measure of other angle is -------.
* (e) A ---------- is common in vertically opposite angles.

Q3.In the fig. BO is perpendicular to CD,then name-

(i)two linear pairs.
(ii) two pairs of vertically opposite angles
(iii) three pairs of adjacent angles
(iv) one pair of complementary angles
(v) one pair of supplementary angles.

Q4. Look at the following figures and fill in

 the blanks -* (I)
(II)

X = --------.
P = -------
(iii)

Complement of $\angle A B C=---$
(iv) P
$\underbrace{}_{\text {G.P.JANA,AECS-2,TARAPUR }} 110^{0}$ supplement of $\angle P Q R=----$

