CHAPTER – 5 LINES AND ANGLES Class-7 Module- $\frac{2}{3}$

1

INTRODUCTION: In the previous module we learnt about the angle. In this module we learn more about the angles.

***ADJACENT ANGLES –**

 A pair of angles are called adjacent angles if-

(a) they have a common vertex.

(b) they have a common arm.(c) the non-common arms are on either side of the common arm.

∟ ADB and ∟ BDC are adjacent angles, because the common vertex is D ,common arm is BD and the non-common arms AD and CD lie on opposite sides of the common arm BD.

 \Box ADB and \Box ADC are not adjacent angles, because the common vertex is D, common arm is AD and the noncommon arms BD and CD lie on same sides of the common arm.

LINEAR PAIR ANGLES -

*A pair of adjacent angles are said to be linear pair, if the non- common arms form opposite rays.

* Example-1

* ∟ ACB and ∟ ACD are linear pair, as the non-common arms form opposite rays.

* Linear pair angles are supplementary. (Their sum is 180°)

ightharpoonup PSQ and
ightharpoonup QSR are not linear pair, as the non-common arms do not form opposite rays.

Example -3.In the fig. \bot ACB and \bot ACD are linear pair, \bot ACB= 2x+8 and \bot ACD = x - 2. Find x.

Α

*

B

9

→ **|**)

 $\bot ACB + \bot ACD = 180^{\circ}$ (Linear pair) * Or, $2x + 8^{\circ} + x - 2 = 180^{\circ}$ * Or, $3x + 6^{\circ} = 180^{\circ}$ Or, $3x = 180^{\circ} - 6^{\circ} = 174^{\circ}$ *

Or, x = $\frac{174}{3}$ = 58° $\bot ACB = 2x + 8 = 2x - 58 + 8$ * $= 116 + 8 = 124^{\circ}$ * $\angle ACD = x - 2 = 58 - 2$ $= 56^{\circ}$

VERTICALLY OPPOSITE ANGLES -If two line segments or lines intersect with each other, then a pair of angles are said to be vertically opposite angles, if they have a common vertex and no common arms.

If two lines intersect with each other, then the vertically opposite angles are equal. so, $\lfloor 1 = \lfloor 3$ and $\lfloor 2 = \lfloor 4$

*Proof- \bot 1+ \sqsubseteq 4 = 180° (linear pair)	
X	or, L1=180° - L4 (i)
*	or, $\lfloor 4 + \lfloor 3 = 180^{\circ}$ (linear pair)
*	or, ∟3=180°-∟4 (ii)
*	By (i) and (ii)
*	∟1= ∟3
*	Similarly ∟2=∟4

Example-1 If in the fig. LAOC = 30° find the other angles.

*

$\square AOB = \square COD$ (Vertically opposite angles)

- * $30^\circ = \Box COD$
- * $\bot AOC + \bot AOB = 180^{\circ}$ (Linear pair)
- * $\bot AOC + 30^{\circ} = 180^{\circ}$
- * $\bot AOC = 180^{\circ} 30^{\circ} = 50^{\circ}$
- * ∟AOC = ∟BOD (Vertically opposite angles)
- * $50^\circ = \square BOD$

Example2-If in the fig. $\square AOC = 68^{\circ}$ and $\square BOD = 70^{\circ}$, then find $\square COD$.

 $\Box AOC + \Box COD + \Box BOD = 180^{\circ}$ (Straight angle) $68^{\circ} + \bot COD + 70^{\circ} = 180^{\circ}$ * $LCOD + 138^{\circ} = 180^{\circ}$ * $\Box COD = 180^{\circ} - 138^{\circ} = 42^{\circ}$ *

 What we have learnt –
 (a) Adjacent angles- A pair of angles having a common vertex, a common arm and non-common arms lie on opposite sides of common arm.

 * (b) Linear pair- A pair of adjacent angles in which the non-common arms form opposite rays.

(c) Vertically opposite angles -If two line segments or lines intersect with each other, then a pair of angles are said to be vertically opposite angles, if they have a common vertex and no common arm

*ASSIGNMENTS -*Q1.Name all the adjacent angles-

R

E

*** Q2Fill in the blanks-**

- (a) The measure of a linear pair angles is ----.
- * (b) An adjacent pair of angles have a common ------ and common -----
- * (c) In a linear pair angles ,the non-common arms form opposite -----.
- * (d)One of the angles of a linear pair is 45°
 ,then the measure of other angle is -----.
- * (e) A ----- is common in vertically opposite angles.

Q3.In the fig. BO is perpendicular to CD, then name-

(i)two linear pairs.
(ii) two pairs of vertically opposite angles
(iii) three pairs of adjacent angles
(iv) one pair of complementary angles
(v) one pair of supplementary angles.

Q4. Look at the following figures and fill in the blanks –

