pterb- The triang properties-
 Exterior angle property and angle sum property in a triangle

Exterior angle of a triangle:-

- When a side of a triangle is extended in one direction , the angle thus formed is called exterior angle.
- It is adjacent to the interior angle of the triangle at that particular vertex.

An example -

${ }^{-}$In the adjacent figure, for the triangle $\mathrm{ABC}, \alpha, \beta$ and γ are the interior angles at the vertices A, B and C respectively.

- At the same vertices A, B and C the exterior angles are $\alpha^{\prime}, \beta^{\prime}$ and γ^{\prime}.
${ }^{-}$Here α, β, γ and α^{\prime}, β ' γ ' are the denotions of the angles.(You may use any number/small alphabetical letters in place of these symbols).

Interior opposite angles

- Draw a triangle ABC and produce one of its side, say AC (as shown in the adjacent figure).
- Observe the exterior angle formed at the point C .
${ }^{-}$Here $\angle 4$ is the adjacent angle of $\angle 3$.
- $\angle 1$ and $\angle 2$ are the two interior opposite angles of the exterior angle $\angle 4$.

Hands on activity:-

- Drawa a triangle ABC.
- Extend one of the sides (let BC).
- Now take a protractor and measure the exterior angle formed at the point C (Let $\left.\gamma^{\prime}\right)$
- Now measure the interior angles at the points A and $\mathrm{B}($ let α and β).

Continued:-

- Find $m \angle A+m \angle B$.
${ }^{-}$Compare the sum with the measure of exterior angle at the point C .
- What do you observe?
- Exterior angle is equal to the sum of interior opposite angles.
${ }^{-} \gamma^{\prime}=\alpha+\beta$

Geometrical justification:-

Continued:-

- Let us take a triangle ABC .
- Let the side AC be extended in one direction and passes through G.
- Let us draw a line passing through the vertex B and parallel to the side AC.
- Let the line be BH.
- We can see, $\mathrm{m} \angle \mathrm{HBA}=\mathrm{m} \angle \mathrm{BAC}$ (Since BH is parallel to AC and $A B$ is a transversal line. Therefore, the alternate interior angles are equal.)
- $\mathrm{m} \angle \mathrm{HBA}=\mathrm{a}^{\circ}$,
${ }^{\circ} \mathrm{m} \angle \mathrm{HBC}=\mathrm{a}^{\circ}+\mathrm{b}^{\circ}$ (according to figure $)$.

Continued:-

- $\mathrm{m} \angle \mathrm{HBC}=\mathrm{m} \angle \mathrm{BCG}$, (since BH is parallel to AG and BC is a transversal line. Therefore alternate interior angles are equal).
- $\mathrm{m} \angle \mathrm{BCG}=\mathrm{a}^{\circ}+\mathrm{b}^{\circ}$
${ }^{\bullet} \mathrm{m} \angle \mathrm{BCG}=\mathrm{m} \angle \mathrm{A}+\angle \mathrm{B}$.
- Hence, an exterior angle of a triangle is equal to the sum of its interior opposite angles.

An illustrative example:-

${ }^{-}$In the given figure, find the value of $\angle 1$ and $\angle 2$.
${ }^{-}$Solution:- Here, $\angle 2$ is an exterior angle of this triangle ,it is equal to the sum of opposite interior angles.

- $\angle 2=20^{\circ}+60^{\circ}=80^{\circ}$
${ }^{-}$Now, $\angle 1$ and $\angle 2$ are linear pair of angles,

$$
\angle 1=180^{\circ}-80^{\circ}=100^{\circ} .
$$

Angle sum property of a triangle

- In a triangle , the sum of all three interior angles is always equal to 180°.
- In this triangle ABC , the sum of all three angles $a^{\circ}+b^{\circ}+c^{\circ}=180^{\circ}$.
${ }^{-}$In other words, $\mathrm{m} \angle \mathrm{A}+$ $\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}=180^{\circ}$.

Hands on activity:-

- Draw any triangle ABC.
- Trace the angle $\angle \mathrm{B}$ and $\angle \mathrm{C}$ on a tracing paper.
- Cut out the copies of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ from the tracing paper.
- Let us name copies of $\angle \mathrm{B}=$ $\angle 1$ and $\angle \mathrm{C}=\angle 2$

Continued:-

- Put the two pieces adjacent to the vertex A, such that the vertices of two angles($\angle 1$ and $\angle 2$) and the point A coincide.
- What do you observe?
- $\angle 1+\angle \mathrm{A}+\angle 2=180^{\circ}$.(straight angle)
${ }^{-}$It means $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}=180^{\circ}$.

An illustrative examples

- If $a: b: c=2: 3: 4$. Then find the value of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .
- Solution:- We know that the sum of all the angles of a triangles is 180°.
- Let $\mathrm{a}=2 \mathrm{x}^{\circ}, \mathrm{b}=3 \mathrm{x}^{\circ}$ and $\mathrm{c}=$ $4 x^{\circ}$
- Since, $\mathrm{a}^{\circ}+\mathrm{b}^{\circ}+\mathrm{c}^{\circ}=180^{\circ}$

Continued

- $2 \mathrm{x}^{\circ}+3 \mathrm{x}^{\circ}+4 \mathrm{x}^{\circ}=180^{\circ}$
- $9 x^{\circ}=180^{\circ}$
- $\mathrm{X}=20$
- $\mathrm{A}=40^{\circ}$,
- $\mathrm{B}=60^{\circ}$,
- $\mathrm{C}=80^{\circ}$
- Now, c+d=180 ${ }^{\circ}$,

$\mathrm{D}=180^{\circ}-60^{\circ}=120^{\circ}$.

Geometricals Justification:-

- Statement:- The total measure of the three angles of a triangle is 180°.
- Given:- $\angle 1, \angle 2$ and $\angle 3$ are the interior angles of the triangle ABC .
- $\angle 4$ is the exterior angle when AC is extended in one direction.

Continued:-

- Justification:- $\angle 1+\angle 2=$ $\angle 4$ (by exterior angle property)
- $\angle 1+\angle 2+\angle 3=\angle 4+$ $\angle 3$ (adding angle 3 to both the sides).
- But $\angle 4$ and $\angle 3$ form the linear pair so it is 180°.
- Therefore , $\angle 1+\angle 2+\angle 3=$ 180°.

Special type of triangles:-

- Isosceles triangles:-
- It is a special type of triangle in which two sides are equal.
- The angles opposite to equal sides are also equal.
- Two equal angles are called base angles.
- The third angle is called vertex angle.
vertex point

Hands on activity:-

- Statement:- In an isosceles triangle the angles opposite to equal sides are equal
- From a piece of paper cut out an isosceles triangle XYZ , with $\mathrm{XY}=\mathrm{XZ}$.
- Fold it such that Z lies on Y .
- The line XM through X is now the axis of symmetry.
- If you observe, you can find that $\angle Y$ and $\angle \mathrm{Z}$ fit on each other exactly.
- It means that $\angle \mathrm{Y}$ and $\angle \mathrm{Z}$ are equal to each other.
- Base angles of an isosceles triangle are always equal.

Equilateral triangle:-

- It is a special type of triangle.
- The three sides of this triangle are equal.
- The three angles of this triangle are always equal and equal to 60°.

An illustrative example:-

- Find the value of x and y.
- Solution:- Here, $\mathrm{y}=90^{\circ}$ (vertically opposite angles are equal)
- Since $x+x+y=180^{\circ}($ angle
- sum - property)
- $2 \mathrm{x}+90^{\circ}=180^{\circ}$
- $2 \mathrm{x}=90^{\circ}$
- $X=45^{\circ}$

